Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
import subprocess
|
2 |
-
import sys
|
3 |
-
import os
|
4 |
-
import gradio as gr
|
5 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
-
from qwen_vl_utils import process_vision_info
|
7 |
-
import torch
|
8 |
-
import pandas as pd
|
9 |
-
import pytesseract
|
10 |
-
import cv2
|
11 |
-
import pymssql
|
12 |
-
|
13 |
-
# Hardcoded Hugging Face token and SQL server IP address
|
14 |
-
SERVER_IP = "35.227.148.156"
|
15 |
-
|
16 |
-
# Install dependencies in smaller chunks to avoid memory issues
|
17 |
-
def install_dependencies():
|
18 |
-
dependency_groups = [
|
19 |
-
["pip==23.3.1", "setuptools", "wheel"],
|
20 |
-
["pytesseract"],
|
21 |
-
["torch==2.1.0+cpu", "torchvision==0.16.0+cpu", "torchaudio==2.1.0+cpu"],
|
22 |
-
["transformers==4.38.2", "auto-gptq==0.7.1", "autoawq==0.2.8"],
|
23 |
-
["qwen_vl_utils==0.0.8", "gradio==4.27.0"],
|
24 |
-
["pyodbc", "sqlalchemy", "azure-storage-blob", "pymssql", "pandas", "opencv-python"]
|
25 |
-
]
|
26 |
-
|
27 |
-
for group in dependency_groups:
|
28 |
-
for package in group:
|
29 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package], stdout=sys.stdout, stderr=sys.stderr)
|
30 |
-
print(f"Installed {package}")
|
31 |
-
|
32 |
-
install_dependencies()
|
33 |
-
|
34 |
-
# Install system dependencies (executed separately to avoid timeout issues)
|
35 |
-
def install_system_dependencies():
|
36 |
-
commands = [
|
37 |
-
"apt-get update",
|
38 |
-
"apt-get install -y unixodbc-dev tesseract-ocr",
|
39 |
-
"ACCEPT_EULA=Y apt-get install -y msodbcsql17"
|
40 |
-
]
|
41 |
-
for command in commands:
|
42 |
-
subprocess.run(command, shell=True, check=True)
|
43 |
-
print(f"Executed: {command}")
|
44 |
-
|
45 |
-
install_system_dependencies()
|
46 |
-
|
47 |
-
# Initialize model and processor with CPU mode
|
48 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
49 |
-
"Qwen/Qwen2-VL-2B-Instruct-AWQ",
|
50 |
-
torch_dtype="auto",
|
51 |
-
use_auth_token=HUGGINGFACE_API_KEY
|
52 |
-
)
|
53 |
-
|
54 |
-
# Force model to use CPU to avoid memory issues on Hugging Face Spaces
|
55 |
-
model.to("cpu")
|
56 |
-
|
57 |
-
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-AWQ", use_auth_token=HUGGINGFACE_API_KEY)
|
58 |
-
|
59 |
-
pytesseract.pytesseract_cmd = r'/usr/bin/tesseract'
|
60 |
-
|
61 |
-
# Function to preprocess the image for OCR
|
62 |
-
def preprocess_image(image_path):
|
63 |
-
image = cv2.imread(image_path)
|
64 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
65 |
-
_, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
|
66 |
-
return binary
|
67 |
-
|
68 |
-
# Function to extract text using OCR
|
69 |
-
def ocr_extract_text(image_path):
|
70 |
-
preprocessed_image = preprocess_image(image_path)
|
71 |
-
return pytesseract.image_to_string(preprocessed_image)
|
72 |
-
|
73 |
-
# Function to process image and extract details
|
74 |
-
def process_image(image_path):
|
75 |
-
try:
|
76 |
-
messages = [{
|
77 |
-
"role": "user",
|
78 |
-
"content": [
|
79 |
-
{"type": "image", "image": image_path},
|
80 |
-
{"type": "text", "text": (
|
81 |
-
"Extract the following details from the invoice:\n"
|
82 |
-
"- 'invoice_number'\n"
|
83 |
-
"- 'date'\n"
|
84 |
-
"- 'place'\n"
|
85 |
-
"- 'amount' (monetary value in the relevant currency)\n"
|
86 |
-
"- 'category' (based on the invoice type)"
|
87 |
-
)}
|
88 |
-
]
|
89 |
-
}]
|
90 |
-
|
91 |
-
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
92 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
93 |
-
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
|
94 |
-
inputs = inputs.to(model.device)
|
95 |
-
|
96 |
-
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
97 |
-
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
98 |
-
|
99 |
-
return parse_details(output_text[0])
|
100 |
-
|
101 |
-
except Exception as e:
|
102 |
-
print(f"Model failed, falling back to OCR: {e}")
|
103 |
-
ocr_text = ocr_extract_text(image_path)
|
104 |
-
return parse_details(ocr_text)
|
105 |
-
|
106 |
-
# Function to parse details from extracted text
|
107 |
-
def parse_details(details):
|
108 |
-
parsed_data = {
|
109 |
-
"Invoice Number": None,
|
110 |
-
"Date": None,
|
111 |
-
"Place": None,
|
112 |
-
"Amount": None,
|
113 |
-
"Category": None
|
114 |
-
}
|
115 |
-
|
116 |
-
lines = details.split("\n")
|
117 |
-
for line in lines:
|
118 |
-
lower_line = line.lower()
|
119 |
-
if "invoice" in lower_line:
|
120 |
-
parsed_data["Invoice Number"] = line.split(":")[-1].strip()
|
121 |
-
elif "date" in lower_line:
|
122 |
-
parsed_data["Date"] = line.split(":")[-1].strip()
|
123 |
-
elif "place" in lower_line:
|
124 |
-
parsed_data["Place"] = line.split(":")[-1].strip()
|
125 |
-
elif any(keyword in lower_line for keyword in ["total", "amount", "cost"]):
|
126 |
-
parsed_data["Amount"] = line.split(":")[-1].strip()
|
127 |
-
else:
|
128 |
-
parsed_data["Category"] = "General"
|
129 |
-
|
130 |
-
return parsed_data
|
131 |
-
|
132 |
-
# Store extracted data in Azure SQL Database
|
133 |
-
def store_to_azure_sql(dataframe):
|
134 |
-
conn_str = (
|
135 |
-
f"Driver={{ODBC Driver 17 for SQL Server}};"
|
136 |
-
f"Server={SERVER_IP};"
|
137 |
-
"Database=Invoices;"
|
138 |
-
"UID=pio-admin;"
|
139 |
-
"PWD=Poctest123#;"
|
140 |
-
)
|
141 |
-
try:
|
142 |
-
with pymssql.connect(SERVER_IP, "pio-admin", "Poctest123#", "Invoices") as conn:
|
143 |
-
cursor = conn.cursor()
|
144 |
-
create_table_query = """
|
145 |
-
IF NOT EXISTS (SELECT * FROM sysobjects WHERE name='Invoices' AND xtype='U')
|
146 |
-
CREATE TABLE Invoices (
|
147 |
-
InvoiceNumber NVARCHAR(255),
|
148 |
-
Date NVARCHAR(255),
|
149 |
-
Place NVARCHAR(255),
|
150 |
-
Amount NVARCHAR(255),
|
151 |
-
Category NVARCHAR(255)
|
152 |
-
)
|
153 |
-
"""
|
154 |
-
cursor.execute(create_table_query)
|
155 |
-
|
156 |
-
for _, row in dataframe.iterrows():
|
157 |
-
insert_query = """
|
158 |
-
INSERT INTO Invoices (InvoiceNumber, Date, Place, Amount, Category)
|
159 |
-
VALUES (%s, %s, %s, %s, %s)
|
160 |
-
"""
|
161 |
-
cursor.execute(insert_query, (row['Invoice Number'], row['Date'], row['Place'], row['Amount'], row['Category']))
|
162 |
-
conn.commit()
|
163 |
-
print("Data successfully stored in Azure SQL Database.")
|
164 |
-
except Exception as e:
|
165 |
-
print(f"Error storing data to database: {e}")
|
166 |
-
|
167 |
-
# Gradio interface for invoice processing
|
168 |
-
def gradio_interface(image_files):
|
169 |
-
results = []
|
170 |
-
for image_file in image_files:
|
171 |
-
details = process_image(image_file)
|
172 |
-
results.append(details)
|
173 |
-
|
174 |
-
df = pd.DataFrame(results)
|
175 |
-
store_to_azure_sql(df)
|
176 |
-
return df
|
177 |
-
|
178 |
-
# Launch Gradio interface
|
179 |
-
grpc_interface = gr.Interface(
|
180 |
-
fn=gradio_interface,
|
181 |
-
inputs=gr.Files(label="Upload Invoice Images"),
|
182 |
-
outputs=gr.Dataframe(interactive=True),
|
183 |
-
title="Invoice Extraction System",
|
184 |
-
)
|
185 |
-
|
186 |
-
if __name__ == "__main__":
|
187 |
-
grpc_interface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|