Spaces:
Runtime error
Runtime error
Upload germantoenglish.py
Browse files- germantoenglish.py +493 -0
germantoenglish.py
ADDED
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""germanToEnglish.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1UI02YcWdG9ErJd18evuYmF1vNiqz7geo
|
8 |
+
"""
|
9 |
+
|
10 |
+
from torchtext.data.utils import get_tokenizer
|
11 |
+
from torchtext.vocab import build_vocab_from_iterator
|
12 |
+
from torchtext.datasets import multi30k, Multi30k
|
13 |
+
from typing import Iterable, List
|
14 |
+
|
15 |
+
|
16 |
+
# We need to modify the URLs for the dataset since the links to the original dataset are broken
|
17 |
+
# Refer to https://github.com/pytorch/text/issues/1756#issuecomment-1163664163 for more info
|
18 |
+
multi30k.URL["train"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz"
|
19 |
+
multi30k.URL["valid"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/validation.tar.gz"
|
20 |
+
|
21 |
+
SRC_LANGUAGE = 'de'
|
22 |
+
TGT_LANGUAGE = 'en'
|
23 |
+
|
24 |
+
# Place-holders
|
25 |
+
token_transform = {}
|
26 |
+
vocab_transform = {}
|
27 |
+
|
28 |
+
#from google.colab import drive
|
29 |
+
#drive.mount('/gdrive')
|
30 |
+
|
31 |
+
#!pip install -U torchdata
|
32 |
+
#!pip install -U spacy
|
33 |
+
|
34 |
+
#!python -m spacy download en_core_web_sm
|
35 |
+
#!python -m spacy download de_core_news_sm
|
36 |
+
|
37 |
+
#!pip install portalocker>=2.0.0
|
38 |
+
|
39 |
+
token_transform[SRC_LANGUAGE] = get_tokenizer('spacy', language='de_core_news_sm')
|
40 |
+
token_transform[TGT_LANGUAGE] = get_tokenizer('spacy', language='en_core_web_sm')
|
41 |
+
|
42 |
+
|
43 |
+
# helper function to yield list of tokens
|
44 |
+
def yield_tokens(data_iter: Iterable, language: str) -> List[str]:
|
45 |
+
language_index = {SRC_LANGUAGE: 0, TGT_LANGUAGE: 1}
|
46 |
+
|
47 |
+
for data_sample in data_iter:
|
48 |
+
yield token_transform[language](data_sample[language_index[language]])
|
49 |
+
|
50 |
+
# Define special symbols and indices
|
51 |
+
UNK_IDX, PAD_IDX, BOS_IDX, EOS_IDX = 0, 1, 2, 3
|
52 |
+
# Make sure the tokens are in order of their indices to properly insert them in vocab
|
53 |
+
special_symbols = ['<unk>', '<pad>', '<bos>', '<eos>']
|
54 |
+
|
55 |
+
for ln in [SRC_LANGUAGE, TGT_LANGUAGE]:
|
56 |
+
# Training data Iterator
|
57 |
+
train_iter = Multi30k(split='train', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE))
|
58 |
+
# Create torchtext's Vocab object
|
59 |
+
vocab_transform[ln] = build_vocab_from_iterator(yield_tokens(train_iter, ln),
|
60 |
+
min_freq=1,
|
61 |
+
specials=special_symbols,
|
62 |
+
special_first=True)
|
63 |
+
|
64 |
+
# Set ``UNK_IDX`` as the default index. This index is returned when the token is not found.
|
65 |
+
# If not set, it throws ``RuntimeError`` when the queried token is not found in the Vocabulary.
|
66 |
+
for ln in [SRC_LANGUAGE, TGT_LANGUAGE]:
|
67 |
+
vocab_transform[ln].set_default_index(UNK_IDX)
|
68 |
+
|
69 |
+
from torch import Tensor
|
70 |
+
import torch
|
71 |
+
import torch.nn as nn
|
72 |
+
from torch.nn import Transformer
|
73 |
+
import math
|
74 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
75 |
+
|
76 |
+
# helper Module that adds positional encoding to the token embedding to introduce a notion of word order.
|
77 |
+
class PositionalEncoding(nn.Module):
|
78 |
+
def __init__(self,
|
79 |
+
emb_size: int,
|
80 |
+
dropout: float,
|
81 |
+
maxlen: int = 5000):
|
82 |
+
super(PositionalEncoding, self).__init__()
|
83 |
+
den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size)
|
84 |
+
pos = torch.arange(0, maxlen).reshape(maxlen, 1)
|
85 |
+
pos_embedding = torch.zeros((maxlen, emb_size))
|
86 |
+
pos_embedding[:, 0::2] = torch.sin(pos * den)
|
87 |
+
pos_embedding[:, 1::2] = torch.cos(pos * den)
|
88 |
+
pos_embedding = pos_embedding.unsqueeze(-2)
|
89 |
+
|
90 |
+
self.dropout = nn.Dropout(dropout)
|
91 |
+
self.register_buffer('pos_embedding', pos_embedding)
|
92 |
+
|
93 |
+
def forward(self, token_embedding: Tensor):
|
94 |
+
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])
|
95 |
+
|
96 |
+
# helper Module to convert tensor of input indices into corresponding tensor of token embeddings
|
97 |
+
class TokenEmbedding(nn.Module):
|
98 |
+
def __init__(self, vocab_size: int, emb_size):
|
99 |
+
super(TokenEmbedding, self).__init__()
|
100 |
+
self.embedding = nn.Embedding(vocab_size, emb_size)
|
101 |
+
self.emb_size = emb_size
|
102 |
+
|
103 |
+
def forward(self, tokens: Tensor):
|
104 |
+
return self.embedding(tokens.long()) * math.sqrt(self.emb_size)
|
105 |
+
|
106 |
+
# Seq2Seq Network
|
107 |
+
class Seq2SeqTransformer(nn.Module):
|
108 |
+
def __init__(self,
|
109 |
+
num_encoder_layers: int,
|
110 |
+
num_decoder_layers: int,
|
111 |
+
emb_size: int,
|
112 |
+
nhead: int,
|
113 |
+
src_vocab_size: int,
|
114 |
+
tgt_vocab_size: int,
|
115 |
+
dim_feedforward: int = 512,
|
116 |
+
dropout: float = 0.1):
|
117 |
+
super(Seq2SeqTransformer, self).__init__()
|
118 |
+
self.transformer = Transformer(d_model=emb_size,
|
119 |
+
nhead=nhead,
|
120 |
+
num_encoder_layers=num_encoder_layers,
|
121 |
+
num_decoder_layers=num_decoder_layers,
|
122 |
+
dim_feedforward=dim_feedforward,
|
123 |
+
dropout=dropout)
|
124 |
+
self.generator = nn.Linear(emb_size, tgt_vocab_size)
|
125 |
+
self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
|
126 |
+
self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
|
127 |
+
self.positional_encoding = PositionalEncoding(
|
128 |
+
emb_size, dropout=dropout)
|
129 |
+
|
130 |
+
def forward(self,
|
131 |
+
src: Tensor,
|
132 |
+
trg: Tensor,
|
133 |
+
src_mask: Tensor,
|
134 |
+
tgt_mask: Tensor,
|
135 |
+
src_padding_mask: Tensor,
|
136 |
+
tgt_padding_mask: Tensor,
|
137 |
+
memory_key_padding_mask: Tensor):
|
138 |
+
src_emb = self.positional_encoding(self.src_tok_emb(src))
|
139 |
+
tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
|
140 |
+
outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None,
|
141 |
+
src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
|
142 |
+
return self.generator(outs)
|
143 |
+
|
144 |
+
def encode(self, src: Tensor, src_mask: Tensor):
|
145 |
+
return self.transformer.encoder(self.positional_encoding(
|
146 |
+
self.src_tok_emb(src)), src_mask)
|
147 |
+
|
148 |
+
def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
|
149 |
+
return self.transformer.decoder(self.positional_encoding(
|
150 |
+
self.tgt_tok_emb(tgt)), memory,
|
151 |
+
tgt_mask)
|
152 |
+
|
153 |
+
from torch import Tensor
|
154 |
+
import torch
|
155 |
+
import torch.nn as nn
|
156 |
+
from torch.nn import Transformer
|
157 |
+
import math
|
158 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
159 |
+
|
160 |
+
# helper Module that adds positional encoding to the token embedding to introduce a notion of word order.
|
161 |
+
class PositionalEncoding(nn.Module):
|
162 |
+
def __init__(self,
|
163 |
+
emb_size: int,
|
164 |
+
dropout: float,
|
165 |
+
maxlen: int = 5000):
|
166 |
+
super(PositionalEncoding, self).__init__()
|
167 |
+
den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size)
|
168 |
+
pos = torch.arange(0, maxlen).reshape(maxlen, 1)
|
169 |
+
pos_embedding = torch.zeros((maxlen, emb_size))
|
170 |
+
pos_embedding[:, 0::2] = torch.sin(pos * den)
|
171 |
+
pos_embedding[:, 1::2] = torch.cos(pos * den)
|
172 |
+
pos_embedding = pos_embedding.unsqueeze(-2)
|
173 |
+
|
174 |
+
self.dropout = nn.Dropout(dropout)
|
175 |
+
self.register_buffer('pos_embedding', pos_embedding)
|
176 |
+
|
177 |
+
def forward(self, token_embedding: Tensor):
|
178 |
+
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])
|
179 |
+
|
180 |
+
# helper Module to convert tensor of input indices into corresponding tensor of token embeddings
|
181 |
+
class TokenEmbedding(nn.Module):
|
182 |
+
def __init__(self, vocab_size: int, emb_size):
|
183 |
+
super(TokenEmbedding, self).__init__()
|
184 |
+
self.embedding = nn.Embedding(vocab_size, emb_size)
|
185 |
+
self.emb_size = emb_size
|
186 |
+
|
187 |
+
def forward(self, tokens: Tensor):
|
188 |
+
return self.embedding(tokens.long()) * math.sqrt(self.emb_size)
|
189 |
+
|
190 |
+
# Seq2Seq Network
|
191 |
+
class Seq2SeqTransformer(nn.Module):
|
192 |
+
def __init__(self,
|
193 |
+
num_encoder_layers: int,
|
194 |
+
num_decoder_layers: int,
|
195 |
+
emb_size: int,
|
196 |
+
nhead: int,
|
197 |
+
src_vocab_size: int,
|
198 |
+
tgt_vocab_size: int,
|
199 |
+
dim_feedforward: int = 512,
|
200 |
+
dropout: float = 0.1):
|
201 |
+
super(Seq2SeqTransformer, self).__init__()
|
202 |
+
self.transformer = Transformer(d_model=emb_size,
|
203 |
+
nhead=nhead,
|
204 |
+
num_encoder_layers=num_encoder_layers,
|
205 |
+
num_decoder_layers=num_decoder_layers,
|
206 |
+
dim_feedforward=dim_feedforward,
|
207 |
+
dropout=dropout)
|
208 |
+
self.generator = nn.Linear(emb_size, tgt_vocab_size)
|
209 |
+
self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
|
210 |
+
self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
|
211 |
+
self.positional_encoding = PositionalEncoding(
|
212 |
+
emb_size, dropout=dropout)
|
213 |
+
|
214 |
+
def forward(self,
|
215 |
+
src: Tensor,
|
216 |
+
trg: Tensor,
|
217 |
+
src_mask: Tensor,
|
218 |
+
tgt_mask: Tensor,
|
219 |
+
src_padding_mask: Tensor,
|
220 |
+
tgt_padding_mask: Tensor,
|
221 |
+
memory_key_padding_mask: Tensor):
|
222 |
+
src_emb = self.positional_encoding(self.src_tok_emb(src))
|
223 |
+
tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
|
224 |
+
outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None,
|
225 |
+
src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
|
226 |
+
return self.generator(outs)
|
227 |
+
|
228 |
+
def encode(self, src: Tensor, src_mask: Tensor):
|
229 |
+
return self.transformer.encoder(self.positional_encoding(
|
230 |
+
self.src_tok_emb(src)), src_mask)
|
231 |
+
|
232 |
+
def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
|
233 |
+
return self.transformer.decoder(self.positional_encoding(
|
234 |
+
self.tgt_tok_emb(tgt)), memory,
|
235 |
+
tgt_mask)
|
236 |
+
|
237 |
+
def generate_square_subsequent_mask(sz):
|
238 |
+
mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1)
|
239 |
+
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
240 |
+
return mask
|
241 |
+
|
242 |
+
|
243 |
+
def create_mask(src, tgt):
|
244 |
+
src_seq_len = src.shape[0]
|
245 |
+
tgt_seq_len = tgt.shape[0]
|
246 |
+
|
247 |
+
tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
|
248 |
+
src_mask = torch.zeros((src_seq_len, src_seq_len),device=DEVICE).type(torch.bool)
|
249 |
+
|
250 |
+
src_padding_mask = (src == PAD_IDX).transpose(0, 1)
|
251 |
+
tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)
|
252 |
+
return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask
|
253 |
+
|
254 |
+
torch.manual_seed(0)
|
255 |
+
|
256 |
+
SRC_VOCAB_SIZE = len(vocab_transform[SRC_LANGUAGE])
|
257 |
+
TGT_VOCAB_SIZE = len(vocab_transform[TGT_LANGUAGE])
|
258 |
+
EMB_SIZE = 512
|
259 |
+
NHEAD = 8
|
260 |
+
FFN_HID_DIM = 512
|
261 |
+
BATCH_SIZE = 128
|
262 |
+
NUM_ENCODER_LAYERS = 3
|
263 |
+
NUM_DECODER_LAYERS = 3
|
264 |
+
|
265 |
+
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,
|
266 |
+
NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
|
267 |
+
|
268 |
+
for p in transformer.parameters():
|
269 |
+
if p.dim() > 1:
|
270 |
+
nn.init.xavier_uniform_(p)
|
271 |
+
|
272 |
+
transformer = transformer.to(DEVICE)
|
273 |
+
|
274 |
+
loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX)
|
275 |
+
|
276 |
+
optimizer = torch.optim.Adam(transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)
|
277 |
+
|
278 |
+
from torch.nn.utils.rnn import pad_sequence
|
279 |
+
|
280 |
+
# helper function to club together sequential operations
|
281 |
+
def sequential_transforms(*transforms):
|
282 |
+
def func(txt_input):
|
283 |
+
for transform in transforms:
|
284 |
+
txt_input = transform(txt_input)
|
285 |
+
return txt_input
|
286 |
+
return func
|
287 |
+
|
288 |
+
# function to add BOS/EOS and create tensor for input sequence indices
|
289 |
+
def tensor_transform(token_ids: List[int]):
|
290 |
+
return torch.cat((torch.tensor([BOS_IDX]),
|
291 |
+
torch.tensor(token_ids),
|
292 |
+
torch.tensor([EOS_IDX])))
|
293 |
+
|
294 |
+
# ``src`` and ``tgt`` language text transforms to convert raw strings into tensors indices
|
295 |
+
text_transform = {}
|
296 |
+
for ln in [SRC_LANGUAGE, TGT_LANGUAGE]:
|
297 |
+
text_transform[ln] = sequential_transforms(token_transform[ln], #Tokenization
|
298 |
+
vocab_transform[ln], #Numericalization
|
299 |
+
tensor_transform) # Add BOS/EOS and create tensor
|
300 |
+
|
301 |
+
|
302 |
+
# function to collate data samples into batch tensors
|
303 |
+
def collate_fn(batch):
|
304 |
+
src_batch, tgt_batch = [], []
|
305 |
+
for src_sample, tgt_sample in batch:
|
306 |
+
src_batch.append(text_transform[SRC_LANGUAGE](src_sample.rstrip("\n")))
|
307 |
+
tgt_batch.append(text_transform[TGT_LANGUAGE](tgt_sample.rstrip("\n")))
|
308 |
+
|
309 |
+
src_batch = pad_sequence(src_batch, padding_value=PAD_IDX)
|
310 |
+
tgt_batch = pad_sequence(tgt_batch, padding_value=PAD_IDX)
|
311 |
+
return src_batch, tgt_batch
|
312 |
+
|
313 |
+
from torch.utils.data import DataLoader
|
314 |
+
|
315 |
+
def train_epoch(model, optimizer):
|
316 |
+
model.train()
|
317 |
+
losses = 0
|
318 |
+
train_iter = Multi30k(split='train', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE))
|
319 |
+
train_dataloader = DataLoader(train_iter, batch_size=BATCH_SIZE, collate_fn=collate_fn)
|
320 |
+
|
321 |
+
for src, tgt in train_dataloader:
|
322 |
+
src = src.to(DEVICE)
|
323 |
+
tgt = tgt.to(DEVICE)
|
324 |
+
|
325 |
+
tgt_input = tgt[:-1, :]
|
326 |
+
|
327 |
+
src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)
|
328 |
+
|
329 |
+
logits = model(src, tgt_input, src_mask, tgt_mask,src_padding_mask, tgt_padding_mask, src_padding_mask)
|
330 |
+
|
331 |
+
optimizer.zero_grad()
|
332 |
+
|
333 |
+
tgt_out = tgt[1:, :]
|
334 |
+
loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
|
335 |
+
loss.backward()
|
336 |
+
|
337 |
+
optimizer.step()
|
338 |
+
losses += loss.item()
|
339 |
+
|
340 |
+
return losses / len(list(train_dataloader))
|
341 |
+
|
342 |
+
def evaluate(model):
|
343 |
+
model.eval()
|
344 |
+
losses = 0
|
345 |
+
|
346 |
+
val_iter = Multi30k(split='valid', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE))
|
347 |
+
val_dataloader = DataLoader(val_iter, batch_size=BATCH_SIZE, collate_fn=collate_fn)
|
348 |
+
|
349 |
+
for src, tgt in val_dataloader:
|
350 |
+
src = src.to(DEVICE)
|
351 |
+
tgt = tgt.to(DEVICE)
|
352 |
+
|
353 |
+
tgt_input = tgt[:-1, :]
|
354 |
+
|
355 |
+
src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)
|
356 |
+
|
357 |
+
logits = model(src, tgt_input, src_mask, tgt_mask,src_padding_mask, tgt_padding_mask, src_padding_mask)
|
358 |
+
|
359 |
+
tgt_out = tgt[1:, :]
|
360 |
+
loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
|
361 |
+
losses += loss.item()
|
362 |
+
|
363 |
+
return losses / len(list(val_dataloader))
|
364 |
+
|
365 |
+
from timeit import default_timer as timer
|
366 |
+
NUM_EPOCHS = 10
|
367 |
+
|
368 |
+
for epoch in range(1, NUM_EPOCHS+1):
|
369 |
+
start_time = timer()
|
370 |
+
train_loss = train_epoch(transformer, optimizer)
|
371 |
+
end_time = timer()
|
372 |
+
val_loss = evaluate(transformer)
|
373 |
+
print((f"Epoch: {epoch}, Train loss: {train_loss:.3f}, Val loss: {val_loss:.3f}, "f"Epoch time = {(end_time - start_time):.3f}s"))
|
374 |
+
|
375 |
+
model =torch.save(transformer.state_dict(), '/gdrive/My Drive/transformer_model.pth')
|
376 |
+
|
377 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
378 |
+
model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,
|
379 |
+
NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
|
380 |
+
model.load_state_dict(torch.load('/gdrive/My Drive/transformer_model.pth', map_location=device))
|
381 |
+
model.to(device)
|
382 |
+
model.eval()
|
383 |
+
|
384 |
+
def greedy_decode(model,src, src_mask, max_len, start_symbol):
|
385 |
+
#DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
386 |
+
src = src.to(DEVICE)
|
387 |
+
src_mask = src_mask.to(DEVICE)
|
388 |
+
#model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE, NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
|
389 |
+
|
390 |
+
#model.load_state_dict(torch.load('/gdrive/My Drive/transformer_model.pth',map_location= DEVICE))
|
391 |
+
|
392 |
+
memory = model.encode(src, src_mask)
|
393 |
+
ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(DEVICE)
|
394 |
+
for i in range(max_len-1):
|
395 |
+
memory = memory.to(DEVICE)
|
396 |
+
tgt_mask = (generate_square_subsequent_mask(ys.size(0))
|
397 |
+
.type(torch.bool)).to(DEVICE)
|
398 |
+
out = model.decode(ys, memory, tgt_mask)
|
399 |
+
out = out.transpose(0, 1)
|
400 |
+
prob = model.generator(out[:, -1])
|
401 |
+
_, next_word = torch.max(prob, dim=1)
|
402 |
+
next_word = next_word.item()
|
403 |
+
|
404 |
+
ys = torch.cat([ys,
|
405 |
+
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0)
|
406 |
+
if next_word == EOS_IDX:
|
407 |
+
break
|
408 |
+
return ys
|
409 |
+
|
410 |
+
# Load the saved model
|
411 |
+
#loaded_model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,
|
412 |
+
# NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
|
413 |
+
#loaded_model.load_state_dict(torch.load('/gdrive/My Drive/transformer_model.pth'))
|
414 |
+
#loaded_model.eval() # Make sure to set the model in evaluation mode
|
415 |
+
|
416 |
+
def translate(src_sentence: str):
|
417 |
+
model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
|
418 |
+
#DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
419 |
+
model.load_state_dict(torch.load('/gdrive/My Drive/transformer_model.pth'))
|
420 |
+
model.to(DEVICE)
|
421 |
+
model.eval()
|
422 |
+
src = text_transform[SRC_LANGUAGE](src_sentence).view(-1, 1)
|
423 |
+
num_tokens = src.shape[0]
|
424 |
+
src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
|
425 |
+
tgt_tokens = greedy_decode(
|
426 |
+
model, src, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX).flatten()
|
427 |
+
return " ".join(vocab_transform[TGT_LANGUAGE].lookup_tokens(list(tgt_tokens.cpu().numpy()))).replace("<bos>", "").replace("<eos>", "")
|
428 |
+
|
429 |
+
print(translate("Eine Gruppe von Menschen steht vor einem Iglu ."))
|
430 |
+
|
431 |
+
#!pip install transformers
|
432 |
+
|
433 |
+
from transformers.modeling_utils import PreTrainedModel ,PretrainedConfig
|
434 |
+
|
435 |
+
class Seq2SeqTransformer(PreTrainedModel):
|
436 |
+
def __init__(self,config):
|
437 |
+
super(Seq2SeqTransformer, self).__init__(config)
|
438 |
+
self.transformer = Transformer(d_model=config.emb_size,
|
439 |
+
nhead=config.nhead,
|
440 |
+
num_encoder_layers=config.num_encoder_layers,
|
441 |
+
num_decoder_layers=config.num_decoder_layers,
|
442 |
+
dim_feedforward=config.dim_feedforward,
|
443 |
+
dropout=config.dropout)
|
444 |
+
self.generator = nn.Linear(config.emb_size, config.tgt_vocab_size)
|
445 |
+
self.src_tok_emb = TokenEmbedding(config.src_vocab_size, config.emb_size)
|
446 |
+
self.tgt_tok_emb = TokenEmbedding(config.tgt_vocab_size, config.emb_size)
|
447 |
+
self.positional_encoding = PositionalEncoding(
|
448 |
+
config.emb_size, dropout=config.dropout)
|
449 |
+
|
450 |
+
config = PretrainedConfig(
|
451 |
+
# Specify your vocabulary size
|
452 |
+
dim_feedforward =512,
|
453 |
+
dropout= 0.1,
|
454 |
+
emb_size= 512,
|
455 |
+
num_decoder_layers= 3,
|
456 |
+
num_encoder_layers= 3,
|
457 |
+
nhead= 8,
|
458 |
+
src_vocab_size= 19214,
|
459 |
+
tgt_vocab_size= 10837
|
460 |
+
)
|
461 |
+
|
462 |
+
model = Seq2SeqTransformer(config)
|
463 |
+
model.to(DEVICE)
|
464 |
+
|
465 |
+
|
466 |
+
model.save_pretrained('/gdrive/My Drive')
|
467 |
+
|
468 |
+
#!pip install -q gradio==3.48.0
|
469 |
+
|
470 |
+
import gradio as gr
|
471 |
+
import torch
|
472 |
+
from torchtext.data.utils import get_tokenizer
|
473 |
+
from torchtext.vocab import build_vocab_from_iterator
|
474 |
+
from torchtext.datasets import Multi30k
|
475 |
+
from torch import Tensor
|
476 |
+
from typing import Iterable, List
|
477 |
+
|
478 |
+
if __name__ == "__main__":
|
479 |
+
# Create the Gradio interface
|
480 |
+
iface = gr.Interface(
|
481 |
+
fn=translate, # Specify the translation function as the main function
|
482 |
+
inputs=[
|
483 |
+
gr.components.Textbox(label="Text")
|
484 |
+
|
485 |
+
],
|
486 |
+
outputs=["text"],
|
487 |
+
cache_examples=False, # Disable caching of examples
|
488 |
+
title="germanToenglish", # Set the title of the interface
|
489 |
+
#description="This is a translator app for arabic and english. Currently supports only english to arabic." # Add a description of the interface
|
490 |
+
)
|
491 |
+
|
492 |
+
# Launch the interface
|
493 |
+
iface.launch(share=True)
|