Spaces:
Runtime error
Runtime error
from torchtext.data.utils import get_tokenizer | |
from torchtext.vocab import build_vocab_from_iterator | |
from torchtext.datasets import multi30k, Multi30k | |
from typing import Iterable, List | |
multi30k.URL["train"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz" | |
multi30k.URL["valid"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/validation.tar.gz" | |
SRC_LANGUAGE = 'de' | |
TGT_LANGUAGE = 'en' | |
# Place-holders | |
token_transform = {} | |
vocab_transform = {} | |
#from google.colab import drive | |
#drive.mount('/gdrive') | |
#!pip install -U torchdata | |
#!pip install -U spacy | |
#!python -m spacy download en_core_web_sm | |
#!python -m spacy download de_core_news_sm | |
#!pip install portalocker>=2.0.0 | |
token_transform[SRC_LANGUAGE] = get_tokenizer('spacy', language='de_core_news_sm') | |
token_transform[TGT_LANGUAGE] = get_tokenizer('spacy', language='en_core_web_sm') | |
# helper function to yield list of tokens | |
def yield_tokens(data_iter: Iterable, language: str) -> List[str]: | |
language_index = {SRC_LANGUAGE: 0, TGT_LANGUAGE: 1} | |
for data_sample in data_iter: | |
yield token_transform[language](data_sample[language_index[language]]) | |
# Define special symbols and indices | |
UNK_IDX, PAD_IDX, BOS_IDX, EOS_IDX = 0, 1, 2, 3 | |
# Make sure the tokens are in order of their indices to properly insert them in vocab | |
special_symbols = ['<unk>', '<pad>', '<bos>', '<eos>'] | |
for ln in [SRC_LANGUAGE, TGT_LANGUAGE]: | |
# Training data Iterator | |
train_iter = Multi30k(split='train', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE)) | |
vocab_transform[ln] = build_vocab_from_iterator(yield_tokens(train_iter, ln), | |
min_freq=1, | |
specials=special_symbols, | |
special_first=True) | |
for ln in [SRC_LANGUAGE, TGT_LANGUAGE]: | |
vocab_transform[ln].set_default_index(UNK_IDX) | |
from torch import Tensor | |
import torch | |
import torch.nn as nn | |
from torch.nn import Transformer | |
import math | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
class PositionalEncoding(nn.Module): | |
def __init__(self, | |
emb_size: int, | |
dropout: float, | |
maxlen: int = 5000): | |
super(PositionalEncoding, self).__init__() | |
den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size) | |
pos = torch.arange(0, maxlen).reshape(maxlen, 1) | |
pos_embedding = torch.zeros((maxlen, emb_size)) | |
pos_embedding[:, 0::2] = torch.sin(pos * den) | |
pos_embedding[:, 1::2] = torch.cos(pos * den) | |
pos_embedding = pos_embedding.unsqueeze(-2) | |
self.dropout = nn.Dropout(dropout) | |
self.register_buffer('pos_embedding', pos_embedding) | |
def forward(self, token_embedding: Tensor): | |
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :]) | |
class TokenEmbedding(nn.Module): | |
def __init__(self, vocab_size: int, emb_size): | |
super(TokenEmbedding, self).__init__() | |
self.embedding = nn.Embedding(vocab_size, emb_size) | |
self.emb_size = emb_size | |
def forward(self, tokens: Tensor): | |
return self.embedding(tokens.long()) * math.sqrt(self.emb_size) | |
# Seq2Seq Network | |
class Seq2SeqTransformer(nn.Module): | |
def __init__(self, | |
num_encoder_layers: int, | |
num_decoder_layers: int, | |
emb_size: int, | |
nhead: int, | |
src_vocab_size: int, | |
tgt_vocab_size: int, | |
dim_feedforward: int = 512, | |
dropout: float = 0.1): | |
super(Seq2SeqTransformer, self).__init__() | |
self.transformer = Transformer(d_model=emb_size, | |
nhead=nhead, | |
num_encoder_layers=num_encoder_layers, | |
num_decoder_layers=num_decoder_layers, | |
dim_feedforward=dim_feedforward, | |
dropout=dropout) | |
self.generator = nn.Linear(emb_size, tgt_vocab_size) | |
self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size) | |
self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size) | |
self.positional_encoding = PositionalEncoding( | |
emb_size, dropout=dropout) | |
def forward(self, | |
src: Tensor, | |
trg: Tensor, | |
src_mask: Tensor, | |
tgt_mask: Tensor, | |
src_padding_mask: Tensor, | |
tgt_padding_mask: Tensor, | |
memory_key_padding_mask: Tensor): | |
src_emb = self.positional_encoding(self.src_tok_emb(src)) | |
tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg)) | |
outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None, | |
src_padding_mask, tgt_padding_mask, memory_key_padding_mask) | |
return self.generator(outs) | |
def encode(self, src: Tensor, src_mask: Tensor): | |
return self.transformer.encoder(self.positional_encoding( | |
self.src_tok_emb(src)), src_mask) | |
def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor): | |
return self.transformer.decoder(self.positional_encoding( | |
self.tgt_tok_emb(tgt)), memory, | |
tgt_mask) | |
from torch import Tensor | |
import torch | |
import torch.nn as nn | |
from torch.nn import Transformer | |
import math | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
class PositionalEncoding(nn.Module): | |
def __init__(self, | |
emb_size: int, | |
dropout: float, | |
maxlen: int = 5000): | |
super(PositionalEncoding, self).__init__() | |
den = torch.exp(- torch.arange(0, emb_size, 2)* math.log(10000) / emb_size) | |
pos = torch.arange(0, maxlen).reshape(maxlen, 1) | |
pos_embedding = torch.zeros((maxlen, emb_size)) | |
pos_embedding[:, 0::2] = torch.sin(pos * den) | |
pos_embedding[:, 1::2] = torch.cos(pos * den) | |
pos_embedding = pos_embedding.unsqueeze(-2) | |
self.dropout = nn.Dropout(dropout) | |
self.register_buffer('pos_embedding', pos_embedding) | |
def forward(self, token_embedding: Tensor): | |
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :]) | |
class TokenEmbedding(nn.Module): | |
def __init__(self, vocab_size: int, emb_size): | |
super(TokenEmbedding, self).__init__() | |
self.embedding = nn.Embedding(vocab_size, emb_size) | |
self.emb_size = emb_size | |
def forward(self, tokens: Tensor): | |
return self.embedding(tokens.long()) * math.sqrt(self.emb_size) | |
# Seq2Seq Network | |
class Seq2SeqTransformer(nn.Module): | |
def __init__(self, | |
num_encoder_layers: int, | |
num_decoder_layers: int, | |
emb_size: int, | |
nhead: int, | |
src_vocab_size: int, | |
tgt_vocab_size: int, | |
dim_feedforward: int = 512, | |
dropout: float = 0.1): | |
super(Seq2SeqTransformer, self).__init__() | |
self.transformer = Transformer(d_model=emb_size, | |
nhead=nhead, | |
num_encoder_layers=num_encoder_layers, | |
num_decoder_layers=num_decoder_layers, | |
dim_feedforward=dim_feedforward, | |
dropout=dropout) | |
self.generator = nn.Linear(emb_size, tgt_vocab_size) | |
self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size) | |
self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size) | |
self.positional_encoding = PositionalEncoding( | |
emb_size, dropout=dropout) | |
def forward(self, | |
src: Tensor, | |
trg: Tensor, | |
src_mask: Tensor, | |
tgt_mask: Tensor, | |
src_padding_mask: Tensor, | |
tgt_padding_mask: Tensor, | |
memory_key_padding_mask: Tensor): | |
src_emb = self.positional_encoding(self.src_tok_emb(src)) | |
tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg)) | |
outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None, | |
src_padding_mask, tgt_padding_mask, memory_key_padding_mask) | |
return self.generator(outs) | |
def encode(self, src: Tensor, src_mask: Tensor): | |
return self.transformer.encoder(self.positional_encoding( | |
self.src_tok_emb(src)), src_mask) | |
def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor): | |
return self.transformer.decoder(self.positional_encoding( | |
self.tgt_tok_emb(tgt)), memory, | |
tgt_mask) | |
def generate_square_subsequent_mask(sz): | |
mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1) | |
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
return mask | |
def create_mask(src, tgt): | |
src_seq_len = src.shape[0] | |
tgt_seq_len = tgt.shape[0] | |
tgt_mask = generate_square_subsequent_mask(tgt_seq_len) | |
src_mask = torch.zeros((src_seq_len, src_seq_len),device=DEVICE).type(torch.bool) | |
src_padding_mask = (src == PAD_IDX).transpose(0, 1) | |
tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1) | |
return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask | |
torch.manual_seed(0) | |
SRC_VOCAB_SIZE = len(vocab_transform[SRC_LANGUAGE]) | |
TGT_VOCAB_SIZE = len(vocab_transform[TGT_LANGUAGE]) | |
EMB_SIZE = 512 | |
NHEAD = 8 | |
FFN_HID_DIM = 512 | |
BATCH_SIZE = 128 | |
NUM_ENCODER_LAYERS = 3 | |
NUM_DECODER_LAYERS = 3 | |
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE, | |
NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM) | |
for p in transformer.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
transformer = transformer.to(DEVICE) | |
loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX) | |
optimizer = torch.optim.Adam(transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9) | |
from torch.nn.utils.rnn import pad_sequence | |
# helper function to club together sequential operations | |
def sequential_transforms(*transforms): | |
def func(txt_input): | |
for transform in transforms: | |
txt_input = transform(txt_input) | |
return txt_input | |
return func | |
def tensor_transform(token_ids: List[int]): | |
return torch.cat((torch.tensor([BOS_IDX]), | |
torch.tensor(token_ids), | |
torch.tensor([EOS_IDX]))) | |
text_transform = {} | |
for ln in [SRC_LANGUAGE, TGT_LANGUAGE]: | |
text_transform[ln] = sequential_transforms(token_transform[ln], #Tokenization | |
vocab_transform[ln], #Numericalization | |
tensor_transform) # Add BOS/EOS and create tensor | |
# function to collate data samples into batch tensors | |
def collate_fn(batch): | |
src_batch, tgt_batch = [], [] | |
for src_sample, tgt_sample in batch: | |
src_batch.append(text_transform[SRC_LANGUAGE](src_sample.rstrip("\n"))) | |
tgt_batch.append(text_transform[TGT_LANGUAGE](tgt_sample.rstrip("\n"))) | |
src_batch = pad_sequence(src_batch, padding_value=PAD_IDX) | |
tgt_batch = pad_sequence(tgt_batch, padding_value=PAD_IDX) | |
return src_batch, tgt_batch | |
from torch.utils.data import DataLoader | |
def train_epoch(model, optimizer): | |
model.train() | |
losses = 0 | |
train_iter = Multi30k(split='train', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE)) | |
train_dataloader = DataLoader(train_iter, batch_size=BATCH_SIZE, collate_fn=collate_fn) | |
for src, tgt in train_dataloader: | |
src = src.to(DEVICE) | |
tgt = tgt.to(DEVICE) | |
tgt_input = tgt[:-1, :] | |
src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input) | |
logits = model(src, tgt_input, src_mask, tgt_mask,src_padding_mask, tgt_padding_mask, src_padding_mask) | |
optimizer.zero_grad() | |
tgt_out = tgt[1:, :] | |
loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1)) | |
loss.backward() | |
optimizer.step() | |
losses += loss.item() | |
return losses / len(list(train_dataloader)) | |
def evaluate(model): | |
model.eval() | |
losses = 0 | |
val_iter = Multi30k(split='valid', language_pair=(SRC_LANGUAGE, TGT_LANGUAGE)) | |
val_dataloader = DataLoader(val_iter, batch_size=BATCH_SIZE, collate_fn=collate_fn) | |
for src, tgt in val_dataloader: | |
src = src.to(DEVICE) | |
tgt = tgt.to(DEVICE) | |
tgt_input = tgt[:-1, :] | |
src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input) | |
logits = model(src, tgt_input, src_mask, tgt_mask,src_padding_mask, tgt_padding_mask, src_padding_mask) | |
tgt_out = tgt[1:, :] | |
loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1)) | |
losses += loss.item() | |
return losses / len(list(val_dataloader)) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE, | |
NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM) | |
model.load_state_dict(torch.load('./transformer_model.pth', map_location=device)) | |
model.to(device) | |
model.eval() | |
def greedy_decode(model,src, src_mask, max_len, start_symbol): | |
src = src.to(DEVICE) | |
src_mask = src_mask.to(DEVICE) | |
memory = model.encode(src, src_mask) | |
ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(DEVICE) | |
for i in range(max_len-1): | |
memory = memory.to(DEVICE) | |
tgt_mask = (generate_square_subsequent_mask(ys.size(0)) | |
.type(torch.bool)).to(DEVICE) | |
out = model.decode(ys, memory, tgt_mask) | |
out = out.transpose(0, 1) | |
prob = model.generator(out[:, -1]) | |
_, next_word = torch.max(prob, dim=1) | |
next_word = next_word.item() | |
ys = torch.cat([ys, | |
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0) | |
if next_word == EOS_IDX: | |
break | |
return ys | |
def translate(src_sentence: str): | |
model = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM) | |
model.load_state_dict(torch.load('./transformer_model.pth')) | |
model.to(DEVICE) | |
model.eval() | |
src = text_transform[SRC_LANGUAGE](src_sentence).view(-1, 1) | |
num_tokens = src.shape[0] | |
src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool) | |
tgt_tokens = greedy_decode( | |
model, src, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX).flatten() | |
return " ".join(vocab_transform[TGT_LANGUAGE].lookup_tokens(list(tgt_tokens.cpu().numpy()))).replace("<bos>", "").replace("<eos>", "") |