Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
import joblib
|
4 |
+
import pandas as pd
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Load model and config from Hugging Face
|
8 |
+
repo_id = "abhishek/autotrain-iris-xgboost"
|
9 |
+
|
10 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.joblib")
|
11 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
12 |
+
|
13 |
+
# Load the model
|
14 |
+
model = joblib.load(model_path)
|
15 |
+
|
16 |
+
# Load the config to get feature names
|
17 |
+
with open(config_path, "r") as f:
|
18 |
+
config = json.load(f)
|
19 |
+
|
20 |
+
feature_names = config["features"]
|
21 |
+
|
22 |
+
# Inference function
|
23 |
+
def predict(sepal_length, sepal_width, petal_length, petal_width):
|
24 |
+
input_df = pd.DataFrame([[
|
25 |
+
sepal_length, sepal_width, petal_length, petal_width
|
26 |
+
]], columns=feature_names)
|
27 |
+
|
28 |
+
prediction = model.predict(input_df)[0]
|
29 |
+
return f"🌸 Predicted species: {prediction}"
|
30 |
+
|
31 |
+
# Gradio interface
|
32 |
+
demo = gr.Interface(
|
33 |
+
fn=predict,
|
34 |
+
inputs=[
|
35 |
+
gr.Slider(4.0, 8.0, step=0.1, label="Sepal Length"),
|
36 |
+
gr.Slider(2.0, 5.0, step=0.1, label="Sepal Width"),
|
37 |
+
gr.Slider(1.0, 7.0, step=0.1, label="Petal Length"),
|
38 |
+
gr.Slider(0.1, 3.0, step=0.1, label="Petal Width"),
|
39 |
+
],
|
40 |
+
outputs=gr.Textbox(label="Prediction"),
|
41 |
+
title="🌸 Iris Flower Classifier",
|
42 |
+
description="Enter flower measurements to predict the species using a model trained with AutoTrain on Hugging Face.",
|
43 |
+
)
|
44 |
+
|
45 |
+
demo.launch()
|