Spaces:
Sleeping
Sleeping
File size: 656 Bytes
25d4bc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
import gradio as gr
from transformers import pipeline
# Load the NER pipeline
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", grouped_entities=True)
# Define the prediction function
def recognize_entities(text):
results = ner_pipeline(text)
return str(results)
# Gradio UI
iface = gr.Interface(fn=recognize_entities,
inputs=gr.Textbox(lines=5, placeholder="Enter your text here..."),
outputs="text",
title="Named Entity Recognition (NER)",
description="Using dslim/bert-base-NER model to identify named entities in text.")
# Launch
iface.launch()
|