Spaces:
Running
Running
File size: 75,606 Bytes
2496b29 f0a1a85 e06aafc 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 683deab 781fa53 50b4bef 2496b29 7234500 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 7234500 47eb7ca 2496b29 7234500 2496b29 7234500 2496b29 47eb7ca 2496b29 7234500 2496b29 7234500 2496b29 50b4bef 47eb7ca 50b4bef 2496b29 47eb7ca 2496b29 47eb7ca 50b4bef 47eb7ca 50b4bef 47eb7ca 2496b29 47eb7ca 2496b29 cc9ee1f 2496b29 47eb7ca 50b4bef 47eb7ca 50b4bef 2496b29 50b4bef 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 cc9ee1f 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 33d3ab3 2496b29 33d3ab3 2496b29 7234500 2496b29 7234500 2496b29 7234500 47eb7ca 7234500 2496b29 7234500 2496b29 7234500 2496b29 7234500 2496b29 47eb7ca 2496b29 33d3ab3 2496b29 7234500 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 7234500 47eb7ca 2496b29 7234500 2496b29 47eb7ca 2496b29 7234500 2496b29 7234500 2496b29 47eb7ca 33d3ab3 2496b29 7234500 2496b29 33d3ab3 47eb7ca 7234500 47eb7ca 7234500 47eb7ca 7234500 33d3ab3 7234500 2496b29 47eb7ca 7234500 2496b29 47eb7ca 2496b29 7234500 2496b29 7234500 33d3ab3 2496b29 33d3ab3 7234500 33d3ab3 7234500 33d3ab3 7234500 33d3ab3 47eb7ca 33d3ab3 47eb7ca 33d3ab3 47eb7ca 33d3ab3 7234500 33d3ab3 7234500 33d3ab3 47eb7ca 33d3ab3 7234500 33d3ab3 7234500 33d3ab3 47eb7ca 7234500 2496b29 47eb7ca 2496b29 33d3ab3 7234500 2496b29 33d3ab3 2496b29 7234500 2496b29 7234500 2496b29 47eb7ca 2496b29 33d3ab3 2496b29 33d3ab3 7234500 2496b29 7234500 33d3ab3 7234500 33d3ab3 7234500 2496b29 33d3ab3 2496b29 47eb7ca 2496b29 7234500 2496b29 33d3ab3 2496b29 7234500 2496b29 33d3ab3 2496b29 7234500 2496b29 7234500 2496b29 47eb7ca 33d3ab3 2496b29 47eb7ca 2496b29 7234500 33d3ab3 2496b29 47eb7ca 33d3ab3 2496b29 33d3ab3 2496b29 33d3ab3 47eb7ca 2496b29 33d3ab3 7234500 2496b29 7234500 47eb7ca 33d3ab3 7234500 47eb7ca 7234500 47eb7ca 7234500 2496b29 7234500 2496b29 7234500 2496b29 7234500 2496b29 33d3ab3 2496b29 7234500 2496b29 7234500 47eb7ca 7234500 2496b29 7234500 2496b29 47eb7ca 7234500 2496b29 7234500 2496b29 47eb7ca 33d3ab3 2496b29 47eb7ca 2496b29 7234500 2496b29 47eb7ca 33d3ab3 7234500 2496b29 47eb7ca 33d3ab3 7234500 33d3ab3 7234500 2496b29 33d3ab3 7234500 2496b29 7234500 2496b29 7234500 47eb7ca 33d3ab3 2496b29 47eb7ca 2496b29 7234500 33d3ab3 2496b29 7234500 47eb7ca 7234500 47eb7ca 7234500 2496b29 7234500 2496b29 7234500 47eb7ca 33d3ab3 47eb7ca 7234500 47eb7ca 7234500 33d3ab3 2496b29 47eb7ca 7234500 33d3ab3 2496b29 47eb7ca 33d3ab3 7234500 47eb7ca 7234500 47eb7ca 33d3ab3 47eb7ca 2496b29 47eb7ca 7234500 2496b29 7234500 2496b29 7234500 2496b29 7234500 2496b29 7234500 33d3ab3 7234500 2496b29 33d3ab3 2496b29 7234500 2496b29 7234500 2496b29 47eb7ca 7234500 2496b29 7234500 47eb7ca 7234500 47eb7ca 2496b29 7234500 47eb7ca 33d3ab3 2496b29 7234500 47eb7ca 7234500 2496b29 47eb7ca 2496b29 7234500 47eb7ca 33d3ab3 2496b29 7234500 33d3ab3 47eb7ca 33d3ab3 2496b29 7234500 33d3ab3 7234500 50b4bef 33d3ab3 50b4bef 2496b29 47eb7ca 50b4bef 33d3ab3 50b4bef 33d3ab3 47eb7ca 50b4bef 47eb7ca 33d3ab3 50b4bef 47eb7ca 50b4bef 33d3ab3 50b4bef 33d3ab3 50b4bef 33d3ab3 50b4bef 33d3ab3 50b4bef 33d3ab3 50b4bef 47eb7ca 50b4bef 2496b29 50b4bef 7234500 47eb7ca 2496b29 50b4bef 2496b29 50b4bef 33d3ab3 50b4bef 2496b29 7234500 33d3ab3 2496b29 33d3ab3 7234500 2496b29 7234500 33d3ab3 47eb7ca 2496b29 50b4bef 33d3ab3 50b4bef 7234500 2496b29 7234500 33d3ab3 47eb7ca 33d3ab3 7234500 33d3ab3 2496b29 7234500 2496b29 7234500 2496b29 47eb7ca 2496b29 7234500 47eb7ca 33d3ab3 47eb7ca 2496b29 47eb7ca 7234500 47eb7ca 2496b29 7234500 2496b29 47eb7ca 33d3ab3 2496b29 7234500 2496b29 7234500 2496b29 7234500 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 7234500 33d3ab3 2496b29 7234500 2496b29 33d3ab3 47eb7ca 33d3ab3 7234500 47eb7ca 2496b29 47eb7ca 33d3ab3 2496b29 33d3ab3 2496b29 7234500 2496b29 33d3ab3 7234500 33d3ab3 7234500 2496b29 7234500 2496b29 7234500 33d3ab3 7234500 33d3ab3 7234500 2496b29 7234500 47eb7ca 33d3ab3 7234500 33d3ab3 7234500 33d3ab3 47eb7ca 33d3ab3 47eb7ca 7234500 2496b29 7234500 2496b29 7234500 33d3ab3 2496b29 7234500 47eb7ca 2496b29 47eb7ca 2496b29 7234500 47eb7ca 33d3ab3 7234500 33d3ab3 47eb7ca 2496b29 7234500 47eb7ca 7234500 2496b29 7234500 2496b29 7234500 2496b29 33d3ab3 47eb7ca 33d3ab3 47eb7ca 50b4bef 33d3ab3 47eb7ca 33d3ab3 47eb7ca 33d3ab3 47eb7ca 33d3ab3 50b4bef 47eb7ca 33d3ab3 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 7234500 47eb7ca 2496b29 7234500 47eb7ca 2496b29 7234500 47eb7ca 33d3ab3 47eb7ca 2496b29 47eb7ca 33d3ab3 47eb7ca 2496b29 33d3ab3 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 47eb7ca 2496b29 7234500 33d3ab3 2496b29 47eb7ca 79b15b7 7234500 79b15b7 47eb7ca 33d3ab3 7234500 3370ddd 79b15b7 7234500 47eb7ca 9452013 79b15b7 7234500 79b15b7 7234500 79b15b7 7234500 79b15b7 33d3ab3 df0b228 79b15b7 6ed5bb1 79b15b7 3370ddd 79b15b7 7234500 79b15b7 47eb7ca 79b15b7 b2a7955 33d3ab3 79b15b7 47eb7ca 79b15b7 7234500 50b4bef 47eb7ca 7234500 47eb7ca 79b15b7 3370ddd 79b15b7 7234500 79b15b7 e5d52ac 79b15b7 7234500 79b15b7 e5d52ac 79b15b7 7234500 79b15b7 e5d52ac 7234500 79b15b7 e5d52ac 7234500 79b15b7 7234500 79b15b7 7234500 79b15b7 e5d52ac 79b15b7 47eb7ca 79b15b7 7234500 79b15b7 47eb7ca 79b15b7 e5d52ac 79b15b7 47eb7ca 33d3ab3 47eb7ca 79b15b7 7234500 47eb7ca 79b15b7 7234500 33d3ab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 |
import gradio as gr
import os
import json
import pandas as pd
from datasets import load_dataset, DatasetDict, Dataset, Audio
from huggingface_hub import HfApi, whoami, login, hf_hub_download
try:
from huggingface_hub.utils import HfHubHTTPError # For newer versions
except ImportError:
from huggingface_hub.hf_api import HfHubHTTPError # For older versions (e.g., <0.5.0)
import tempfile
import shutil
import gc
import time
import psutil
from pydub import AudioSegment
import soundfile as sf
from tenacity import retry, stop_after_attempt, wait_exponential
import re
import numpy as np
from pydantic import BaseModel
from typing import Optional, List, Tuple
from datetime import datetime
import requests
# Log in with Hugging Face token
token = os.getenv("hf_token")
if token:
try:
login(token)
print("Successfully logged in using hf_token environment variable.")
except Exception as e:
print(f"Failed to login with hf_token environment variable: {e}")
token = None # Ensure token is None if login fails
else:
print("Warning: hf_token environment variable not set. Hugging Face Hub operations might fail unless token is provided via UI.")
# Configuration
HF_DATASET_NAME = "navidved/channelb-raw-data"
AUDIO_DIR = "audio"
SAVE_PATH = "annotations.json" # Local filename for annotations
ALLOWED_USERS = ["shahab7", "Amirnamini23", "Mohsen711", "mahya2025", "najmeh00", "sepehr21ar", "zahraemarati", "Moghim72", "amin76", "vargha", "navidved"]
REVIEWERS = ["vargha", "navidved"]
ANNOTATORS = [user for user in ALLOWED_USERS if user not in REVIEWERS]
CURRENT_USERNAME = None
PAGE_SIZE = 100
# SAVE_INTERVAL = 1 # FOR DEBUGGING: PUSH ON EVERY SAVE
SAVE_INTERVAL = 10 # Normal operation: push every 10 saves
# --- SECOND PHASE CONFIGURATION ---
SECOND_PHASE = False
SECOND_PHASE_REVIEW_MAPPING = {}
# Global state variables
current_page = 0
current_page_data = None
audio_backup = {}
annotation_count = 0 # Counts saves since login for the current session
unsaved_changes = {}
total_samples = 0
annotator_ranges = {}
# Pydantic data models
class AudioTrim(BaseModel):
start: float
end: float
class Annotation(BaseModel):
annotator: str
annotated_subtitle: Optional[str] = None
audio_trims: Optional[List[AudioTrim]] = None
is_first_phase_accepted: bool = False
first_phase_reviewer_username: Optional[str] = None
second_phase_reviewed_by: Optional[str] = None
second_phase_review_status: Optional[str] = None
second_phase_review_timestamp: Optional[datetime] = None
create_at: datetime
update_at: datetime
class Sample(BaseModel):
id: int
voice_name: str
original_subtitle: str
ignore_it: bool = False
description: Optional[str] = None
annotations: Optional[List[Annotation]] = None
is_approved_in_second_phase: bool = False
class DatasetModel(BaseModel):
samples: Optional[List[Sample]] = None
# Utility functions
def load_saved_annotations():
dataset_model = None
local_file_loaded_successfully = False
annotations_filename_in_repo = os.path.basename(SAVE_PATH) # e.g., "annotations.json"
if os.path.exists(SAVE_PATH):
try:
with open(SAVE_PATH, "r", encoding="utf-8") as f:
data = json.load(f)
if "samples" in data or not data:
dataset_model = DatasetModel(**data)
print(f"Loaded annotations from local JSON file: {SAVE_PATH}")
local_file_loaded_successfully = True
else:
print(f"Local JSON file {SAVE_PATH} has incorrect structure. Ignoring.")
except Exception as e:
print(f"Error loading local JSON file '{SAVE_PATH}': {str(e)}. Will try HF Hub or create new.")
try:
corrupt_path = SAVE_PATH + ".corrupt." + datetime.now().strftime("%Y%m%d%H%M%S%f")
os.rename(SAVE_PATH, corrupt_path)
print(f"Renamed corrupt local file to {corrupt_path}")
except OSError as re_e:
print(f"Could not rename corrupt local file: {re_e}")
global token # Access the global token, which should be set by hf_login
if not local_file_loaded_successfully and token:
print(f"Local annotations not loaded or not found/corrupt. Trying Hugging Face Hub for {annotations_filename_in_repo}...")
try:
hf_path = hf_hub_download(
repo_id=HF_DATASET_NAME,
filename=annotations_filename_in_repo,
repo_type="dataset",
token=os.getenv("hf_token")
)
with open(hf_path, "r", encoding="utf-8") as f:
data = json.load(f)
dataset_model = DatasetModel(**data)
with open(SAVE_PATH, "w", encoding="utf-8") as f_cache:
f_cache.write(dataset_model.model_dump_json(exclude_none=True, indent=4))
print(f"Loaded annotations from HF '{HF_DATASET_NAME}/{annotations_filename_in_repo}' and cached to '{SAVE_PATH}'.")
except HfHubHTTPError as e:
if e.response.status_code == 404:
print(f"Annotations file '{annotations_filename_in_repo}' not found on HF repo '{HF_DATASET_NAME}'. This is normal if it's the first run or not pushed yet.")
else:
print(f"Error loading JSON file from HF repo '{HF_DATASET_NAME}/{annotations_filename_in_repo}': {str(e)}")
except Exception as e:
print(f"Unexpected error loading JSON file from HF repo '{HF_DATASET_NAME}/{annotations_filename_in_repo}': {str(e)}")
if dataset_model is None:
print("No valid annotations found locally or on HF Hub (or failed to load). Creating new empty DatasetModel.")
dataset_model = DatasetModel(samples=[])
return dataset_model
def push_json_to_hf():
global token # Use the globally set token from hf_login
annotations_filename_in_repo = os.path.basename(SAVE_PATH)
if not token:
print("Push to HF: Aborted. Token not available/set.")
return
print(f"Push to HF: Attempting to upload '{SAVE_PATH}' as '{annotations_filename_in_repo}' to '{HF_DATASET_NAME}'.")
try:
user_details = whoami(token=token)
print(f"Push to HF: Token confirmed for user '{user_details.get('name')}'.")
except Exception as e_whoami:
print(f"Push to HF: Token seems invalid or whoami failed. Error: {e_whoami}")
print(f"Push to HF: Aborting upload due to token validation issue.")
return
try:
api = HfApi()
api.upload_file(
path_or_fileobj=SAVE_PATH, # Local path to the file
path_in_repo=annotations_filename_in_repo, # Name of the file in the repository
repo_type="dataset",
repo_id=HF_DATASET_NAME,
token=os.getenv("hf_token"),
commit_message=f"Updated {annotations_filename_in_repo} via annotation tool at {datetime.now().isoformat()}"
)
print(f"Push to HF: Successfully uploaded '{annotations_filename_in_repo}' to Hugging Face repository '{HF_DATASET_NAME}'.")
except Exception as e:
print(f"Push to HF: Error uploading '{annotations_filename_in_repo}' to '{HF_DATASET_NAME}'. Error: {str(e)}")
import traceback
print("Push to HF: Traceback below:")
traceback.print_exc()
def save_annotations(dataset_model: DatasetModel):
global annotation_count, token # Make sure we're using the global token
# DEBUGGING PRINT
print(f"Debug (save_annotations): annotation_count (before inc)={annotation_count}, SAVE_INTERVAL={SAVE_INTERVAL}, token_is_truthy={bool(token)}")
try:
with open(SAVE_PATH, "w", encoding="utf-8") as f:
f.write(dataset_model.model_dump_json(exclude_none=True, indent=4))
print(f"Saved annotations locally to {SAVE_PATH}")
annotation_count += 1 # Increment after successful local save
if token and (annotation_count % SAVE_INTERVAL == 0):
print(f"Debug (save_annotations): Conditions met for HF push. Current annotation_count={annotation_count}.")
push_json_to_hf()
elif not token:
print(f"Debug (save_annotations): HF push skipped. Token is not available. annotation_count={annotation_count}.")
else: # Token is available, but interval not met
print(f"Debug (save_annotations): HF push skipped. Interval not met. annotation_count={annotation_count}. "
f"Need {(SAVE_INTERVAL - (annotation_count % SAVE_INTERVAL)) % SAVE_INTERVAL} more saves for next push (or 0 if at interval).")
except Exception as e:
print(f"Error in save_annotations (local save or triggering push): {str(e)}")
import traceback
print("Traceback for save_annotations error:")
traceback.print_exc()
def calculate_annotator_ranges(total_samples_val, annotators_list):
num_annotators = len(annotators_list)
if num_annotators == 0 or total_samples_val <= 0:
return {}
samples_per_annotator = total_samples_val // num_annotators
extra_samples = total_samples_val % num_annotators
ranges = {}
start_idx = 0
for i, annotator in enumerate(annotators_list):
end_idx = start_idx + samples_per_annotator - 1
if i < extra_samples:
end_idx += 1
if end_idx >= total_samples_val:
end_idx = total_samples_val -1
if start_idx <= end_idx:
ranges[annotator] = (start_idx, end_idx)
start_idx = end_idx + 1
print(f"Calculated annotator ranges: {ranges}")
return ranges
def initialize_second_phase_assignments():
global SECOND_PHASE_REVIEW_MAPPING, annotator_ranges, total_samples
if not ANNOTATORS or len(ANNOTATORS) < 1:
print("Not enough annotators for second phase review.")
SECOND_PHASE_REVIEW_MAPPING = {}
return
if not annotator_ranges and total_samples > 0:
print("Populating annotator_ranges for second phase initialization (was empty).")
annotator_ranges = calculate_annotator_ranges(total_samples, ANNOTATORS)
elif not annotator_ranges and total_samples <= 0:
print("Warning: Cannot initialize second phase assignments without total_samples and annotator_ranges.")
return
if len(ANNOTATORS) == 1:
annotator = ANNOTATORS[0]
SECOND_PHASE_REVIEW_MAPPING[annotator] = annotator
print(f"Second phase: {annotator} will review their own work.")
else:
for i, reviewer_user in enumerate(ANNOTATORS):
original_annotator_idx = (i - 1 + len(ANNOTATORS)) % len(ANNOTATORS)
original_annotator_user = ANNOTATORS[original_annotator_idx]
SECOND_PHASE_REVIEW_MAPPING[reviewer_user] = original_annotator_user
print(f"Second phase: {reviewer_user} will review {original_annotator_user}'s work.")
for reviewer, original_annotator in SECOND_PHASE_REVIEW_MAPPING.items():
if original_annotator not in annotator_ranges:
print(f"Warning: Original annotator {original_annotator} (being reviewed by {reviewer}) has no range defined in annotator_ranges.")
def get_user_allowed_range(username):
global annotator_ranges, total_samples, ANNOTATORS # Ensure ANNOTATORS is accessible
if SECOND_PHASE:
if not SECOND_PHASE_REVIEW_MAPPING: # If empty, try to initialize
# Need annotator_ranges for initialize_second_phase_assignments
if not annotator_ranges and total_samples > 0 and ANNOTATORS:
annotator_ranges = calculate_annotator_ranges(total_samples, ANNOTATORS)
initialize_second_phase_assignments() # This will populate SECOND_PHASE_REVIEW_MAPPING
original_annotator_to_review = SECOND_PHASE_REVIEW_MAPPING.get(username)
if original_annotator_to_review:
# Ensure annotator_ranges is populated if it wasn't before
if not annotator_ranges and total_samples > 0 and ANNOTATORS:
annotator_ranges = calculate_annotator_ranges(total_samples, ANNOTATORS)
user_range = annotator_ranges.get(original_annotator_to_review)
return user_range
else: # User not found in review mapping (e.g., a first-phase reviewer not part of ANNOTATORS cycle)
return None # Or handle as appropriate, e.g., full range if they are a super-reviewer
else: # First Phase Logic
if get_user_role(username) == "reviewer":
return (0, total_samples - 1) if total_samples > 0 else None
# Ensure annotator_ranges is populated for annotators
elif not annotator_ranges and total_samples > 0 and ANNOTATORS:
annotator_ranges = calculate_annotator_ranges(total_samples, ANNOTATORS)
if username in annotator_ranges:
return annotator_ranges[username]
else:
return None
def is_within_range(absolute_idx, allowed_range):
if allowed_range is None:
return False
return allowed_range[0] <= absolute_idx <= allowed_range[1]
def get_user_role(username):
return "reviewer" if username in REVIEWERS else "annotator"
def get_dataset_info():
global total_samples
if total_samples > 0:
return {'num_samples': total_samples}
try:
print(f"Attempting to load dataset info for {HF_DATASET_NAME} (non-streaming)...")
ds_info_obj = load_dataset(HF_DATASET_NAME, split="train", streaming=False)
num_samples_val = ds_info_obj.num_rows
if num_samples_val and num_samples_val > 0:
total_samples = num_samples_val
print(f"Dataset info: total_samples set to {total_samples}")
return {'num_samples': total_samples}
else:
print(f"Warning: ds_info_obj.num_rows was not positive ({num_samples_val}). Trying iteration for count (may be slow).")
ds_stream = load_dataset(HF_DATASET_NAME, split="train", streaming=True)
count = 0
for _ in ds_stream: # This will iterate over the whole dataset if num_rows is wrong
count +=1
if count % 10000 == 0: print(f"Counting by iteration... at {count}") # Progress for large datasets
if count > 0:
total_samples = count
print(f"Dataset info: total_samples set to {total_samples} by iteration.")
return {'num_samples': total_samples}
else:
print("Warning: Could not determine total_samples from dataset info or iteration.")
total_samples = -1
return {'num_samples': -1}
except Exception as e:
print(f"Error getting dataset info for {HF_DATASET_NAME}: {e}")
total_samples = -1
return {'num_samples': -1}
# Initial data load attempt (will be re-attempted more robustly in hf_login)
# dataset_info = get_dataset_info()
# if total_samples > 0:
# annotator_ranges = calculate_annotator_ranges(total_samples, ANNOTATORS)
# if SECOND_PHASE:
# initialize_second_phase_assignments()
# else:
# print("Initial check: total_samples is not positive. Will rely on login process to set this.")
# annotator_ranges = {}
def get_audio_path(audio_entry):
if isinstance(audio_entry, dict):
if "array" in audio_entry and "sampling_rate" in audio_entry:
return (audio_entry["sampling_rate"], audio_entry["array"])
return audio_entry.get("path", None)
if isinstance(audio_entry, str):
if audio_entry.startswith("http://") or audio_entry.startswith("https://"):
return audio_entry
if os.path.exists(audio_entry):
return audio_entry
if AUDIO_DIR:
joined_path = os.path.join(AUDIO_DIR, audio_entry)
if os.path.exists(joined_path):
return joined_path
return audio_entry
return None
def load_page_data(page_num_within_user_view=0):
global current_page_data, current_page
current_page_data = pd.DataFrame(columns=["audio", "sentence", "id_within_page", "absolute_idx"])
current_page = page_num_within_user_view
user_allowed_range = get_user_allowed_range(CURRENT_USERNAME)
if not user_allowed_range:
print(f"User {CURRENT_USERNAME} has no allowed range.")
return current_page_data
user_start_abs, user_end_abs = user_allowed_range
if user_start_abs < 0 or user_end_abs < 0 or user_start_abs > user_end_abs:
print(f"User {CURRENT_USERNAME} has an invalid allowed range: {user_allowed_range}")
return current_page_data
page_global_start_idx = user_start_abs + (page_num_within_user_view * PAGE_SIZE)
if page_global_start_idx > user_end_abs:
print(f"Requested page {page_num_within_user_view} (abs start {page_global_start_idx}) is beyond user {CURRENT_USERNAME}'s allowed samples end ({user_end_abs}).")
return current_page_data
page_global_end_idx = min(page_global_start_idx + PAGE_SIZE - 1, user_end_abs)
num_samples_on_this_page = page_global_end_idx - page_global_start_idx + 1
if num_samples_on_this_page <= 0:
print(f"No samples for user {CURRENT_USERNAME} on their page {page_num_within_user_view}. Calculated range for page: [{page_global_start_idx}-{page_global_end_idx}]")
return current_page_data
print(f"Loading page {page_num_within_user_view} for user {CURRENT_USERNAME}. "
f"Effective absolute dataset range for this page: [{page_global_start_idx}-{page_global_end_idx}] "
f"(from user range [{user_start_abs}-{user_end_abs}]). "
f"Will attempt to load {num_samples_on_this_page} samples.")
try:
ds_full = load_dataset(HF_DATASET_NAME, split="train", streaming=True, token=token if token else None) # Use token for private datasets
ds_page_specific = ds_full.skip(page_global_start_idx)
page_iterable = ds_page_specific.take(num_samples_on_this_page)
except Exception as e:
print(f"Error loading or processing dataset via skip/take for page data: {e}")
return current_page_data
samples_on_page_list = []
current_processing_abs_idx = page_global_start_idx
for id_on_page_counter, sample_data_item in enumerate(page_iterable):
sample_data_item['absolute_idx'] = current_processing_abs_idx
sample_data_item['id_within_page'] = id_on_page_counter
samples_on_page_list.append(sample_data_item)
current_processing_abs_idx += 1
if id_on_page_counter + 1 >= num_samples_on_this_page:
break
if samples_on_page_list:
current_page_data = pd.DataFrame(samples_on_page_list)
print(f"Loaded {len(samples_on_page_list)} samples for page {page_num_within_user_view}. "
f"First abs_idx: {samples_on_page_list[0]['absolute_idx']}, "
f"Last abs_idx: {samples_on_page_list[-1]['absolute_idx']}.")
else:
print(f"No samples were loaded for page {page_num_within_user_view} (user: {CURRENT_USERNAME}) "
f"despite expecting {num_samples_on_this_page} from range [{page_global_start_idx}-{page_global_end_idx}]. ")
gc.collect()
return current_page_data
# Core functions (save_sample_data, handle_second_phase_action, get_sample, load_interface_data, navigation functions, jump, trim, export etc. remain largely the same as your previous version)
# ... (Keep the rest of your functions from the previous version here)
# For brevity, I'm omitting the bulk of the functions that were not directly related to the HF save issue or initial loading.
# Make sure to include:
# - save_sample_data
# - handle_second_phase_action
# - get_sample
# - load_interface_data
# - navigate_sample and its wrappers
# - jump_to_absolute_idx
# - trim_audio_action, undo_trim_action, confirm_delete_audio_action
# - export_to_huggingface
# - hf_login (ensure it correctly calls get_dataset_info, calculate_annotator_ranges, load_page_data, etc. *after* successful auth)
def save_sample_data(page_idx, idx_on_page, transcript, current_user_performing_action, accepted_flag=False):
global current_page_data, unsaved_changes
if current_page_data is None or idx_on_page < 0 or idx_on_page >= len(current_page_data):
return "Invalid index or data not loaded for current page."
actual_sample_info = current_page_data.iloc[idx_on_page]
absolute_idx = actual_sample_info['absolute_idx']
if not SECOND_PHASE:
allowed_range = get_user_allowed_range(current_user_performing_action)
if not is_within_range(absolute_idx, allowed_range):
return f"You are not allowed to annotate this sample {absolute_idx} (out of range {allowed_range})."
audio_entry_original = actual_sample_info["audio"]
voice_name = os.path.basename(str(get_audio_path(audio_entry_original) or f"sample_{absolute_idx}"))
dataset_model = load_saved_annotations() # This will load existing or create new
sample = next((s for s in dataset_model.samples or [] if s.id == absolute_idx), None)
if not sample:
sample = Sample(
id=absolute_idx,
voice_name=voice_name,
original_subtitle=actual_sample_info["sentence"],
annotations=[]
)
dataset_model.samples = dataset_model.samples or []
dataset_model.samples.append(sample)
now = datetime.now()
annotation = next((a for a in sample.annotations or [] if a.annotator == current_user_performing_action), None)
if get_user_role(current_user_performing_action) == "reviewer" and not SECOND_PHASE :
if annotation:
annotation.annotated_subtitle = transcript.strip()
annotation.update_at = now
annotation.is_first_phase_accepted = accepted_flag
annotation.first_phase_reviewer_username = current_user_performing_action if accepted_flag else None
else:
annotation = Annotation(
annotator=current_user_performing_action,
annotated_subtitle=transcript.strip(),
create_at=now,
update_at=now,
is_first_phase_accepted=accepted_flag,
first_phase_reviewer_username=current_user_performing_action if accepted_flag else None
)
sample.annotations = sample.annotations or []
sample.annotations.append(annotation)
else:
if annotation:
annotation.annotated_subtitle = transcript.strip()
annotation.update_at = now
else:
annotation = Annotation(
annotator=current_user_performing_action,
annotated_subtitle=transcript.strip(),
create_at=now,
update_at=now,
is_first_phase_accepted=False
)
sample.annotations = sample.annotations or []
sample.annotations.append(annotation)
if absolute_idx in unsaved_changes:
del unsaved_changes[absolute_idx]
save_annotations(dataset_model) # This will save locally and potentially push to HF
return f"✓ Saved annotation for sample {absolute_idx}"
def handle_second_phase_action(page_idx, idx_on_page, action: str):
global current_page_data, CURRENT_USERNAME
if not SECOND_PHASE:
return "Not in second phase."
if current_page_data is None or idx_on_page < 0 or idx_on_page >= len(current_page_data):
return "Invalid index or data not loaded for current page (second phase)."
actual_sample_info = current_page_data.iloc[idx_on_page]
absolute_idx = actual_sample_info['absolute_idx']
original_annotator_to_review = SECOND_PHASE_REVIEW_MAPPING.get(CURRENT_USERNAME)
if not original_annotator_to_review:
return f"User {CURRENT_USERNAME} is not assigned to review any user's work in SECOND_PHASE_REVIEW_MAPPING."
dataset_model = load_saved_annotations()
sample = next((s for s in dataset_model.samples or [] if s.id == absolute_idx), None)
if not sample:
return f"Error: Sample {absolute_idx} not found in annotations.json for review."
annotation_to_review = next((ann for ann in sample.annotations or [] if ann.annotator == original_annotator_to_review), None)
if not annotation_to_review:
print(f"Warning: No prior annotation by {original_annotator_to_review} for sample {absolute_idx}. Creating placeholder for review.")
annotation_to_review = Annotation(
annotator=original_annotator_to_review,
annotated_subtitle=sample.original_subtitle, # Or actual_sample_info["sentence"]
create_at=datetime.now(),
update_at=datetime.now()
)
sample.annotations = sample.annotations or []
sample.annotations.append(annotation_to_review)
annotation_to_review.second_phase_reviewed_by = CURRENT_USERNAME
annotation_to_review.second_phase_review_status = action
annotation_to_review.second_phase_review_timestamp = datetime.now()
annotation_to_review.update_at = datetime.now()
if action == "approved":
sample.is_approved_in_second_phase = True
# else: sample.is_approved_in_second_phase = False # Explicitly set to False on rejection
save_annotations(dataset_model)
return f"✓ Review ({action}) saved for sample {absolute_idx} (Original annotator: {original_annotator_to_review})"
def get_sample(page_idx_user_relative, idx_on_page, current_user_displaying):
global current_page_data, total_samples
if current_page_data is None or idx_on_page < 0 or idx_on_page >= len(current_page_data):
# Default empty values for all expected return items
return None, "", f"Invalid index ({idx_on_page}) for current page data (len {len(current_page_data) if current_page_data is not None else 'None'}).", "unreviewed", "white", True, False, "", gr.update(visible=False)
actual_sample_info = current_page_data.iloc[idx_on_page]
absolute_idx = actual_sample_info['absolute_idx']
audio_entry_original = actual_sample_info["audio"]
audio_val = get_audio_path(audio_entry_original)
default_transcript = actual_sample_info.get("sentence", "") # Use .get for safety
transcript_to_display = default_transcript
ui_reviewer_field = "unreviewed"
ui_color = "white"
ui_editable = True
ui_is_accepted_flag = False
status_prefix = ""
user_allowed_range = get_user_allowed_range(current_user_displaying)
if user_allowed_range:
user_start_abs, user_end_abs = user_allowed_range
# Ensure user_start_abs is valid before calculation
if user_start_abs is not None and absolute_idx >= user_start_abs :
current_sample_num_in_user_assignment = absolute_idx - user_start_abs + 1
total_samples_for_user = user_end_abs - user_start_abs + 1
status_prefix = f"Sample {current_sample_num_in_user_assignment} of {total_samples_for_user} for you (Abs Idx {absolute_idx})."
else: # Fallback if range is odd or absolute_idx is somehow outside
status_prefix = f"Sample (Abs Idx {absolute_idx}). Range issue for user stats."
else:
status_prefix = f"Sample (Abs Idx {absolute_idx}). No range assigned."
dataset_model = load_saved_annotations()
sample_from_json = next((s for s in dataset_model.samples or [] if s.id == absolute_idx), None)
if sample_from_json:
if sample_from_json.ignore_it:
audio_val = None
transcript_to_display = "AUDIO DELETED (This audio has been removed.)"
ui_reviewer_field = "deleted"
ui_color = "red"
ui_editable = False
elif SECOND_PHASE:
ui_editable = False
original_annotator_being_reviewed = SECOND_PHASE_REVIEW_MAPPING.get(current_user_displaying)
if not original_annotator_being_reviewed:
transcript_to_display = "Error: You are not mapped to review any user."
ui_color = "red"
ui_reviewer_field = "Error"
else:
ui_reviewer_field = f"Reviewing: {original_annotator_being_reviewed}"
annotation_under_review = next((ann for ann in sample_from_json.annotations or [] if ann.annotator == original_annotator_being_reviewed), None)
if annotation_under_review:
transcript_to_display = annotation_under_review.annotated_subtitle or default_transcript
ui_is_accepted_flag = (annotation_under_review.second_phase_review_status == "approved" and
annotation_under_review.second_phase_reviewed_by == current_user_displaying)
if annotation_under_review.second_phase_reviewed_by:
if annotation_under_review.second_phase_reviewed_by == current_user_displaying:
ui_color = "green" if annotation_under_review.second_phase_review_status == "approved" else "orange"
else:
ui_color = "gray"
ui_reviewer_field += f" (Already reviewed by {annotation_under_review.second_phase_reviewed_by} as {annotation_under_review.second_phase_review_status})"
else:
ui_color = "yellow"
else:
transcript_to_display = default_transcript
ui_reviewer_field += " (No submission by original annotator)"
ui_color = "lightgray"
else: # First Phase Logic
accepted_first_phase_annotation = next((a for a in sample_from_json.annotations or [] if a.is_first_phase_accepted and a.first_phase_reviewer_username), None)
if accepted_first_phase_annotation:
transcript_to_display = accepted_first_phase_annotation.annotated_subtitle or default_transcript
ui_reviewer_field = f"Accepted by: {accepted_first_phase_annotation.first_phase_reviewer_username}"
ui_color = "green"
ui_is_accepted_flag = True
ui_editable = (get_user_role(current_user_displaying) == "reviewer")
else:
user_specific_annotation = next((a for a in sample_from_json.annotations or [] if a.annotator == current_user_displaying), None)
if user_specific_annotation:
transcript_to_display = user_specific_annotation.annotated_subtitle or default_transcript
ui_reviewer_field = f"Your draft (as {user_specific_annotation.annotator})"
ui_color = "yellow"
ui_editable = True
else:
other_annotations = [a for a in sample_from_json.annotations or [] if not a.is_first_phase_accepted]
if other_annotations:
if get_user_role(current_user_displaying) == "reviewer":
other_ann_to_show = other_annotations[0]
transcript_to_display = other_ann_to_show.annotated_subtitle or default_transcript
ui_reviewer_field = f"Draft by: {other_ann_to_show.annotator}"
ui_color = "blue"
ui_editable = True
else:
transcript_to_display = default_transcript
ui_reviewer_field = f"Labeled by: {other_annotations[0].annotator}"
ui_color = "lightblue"
ui_editable = False
if not SECOND_PHASE and absolute_idx in unsaved_changes:
ui_color = "pink"
ui_status_message = f"{status_prefix} Page {page_idx_user_relative + 1} (User-view)."
if SECOND_PHASE:
ui_status_message += " (Review Phase)"
else:
ui_status_message += " (Annotation Phase)"
show_accept_checkbox = not SECOND_PHASE and get_user_role(current_user_displaying) == "reviewer"
return audio_val, transcript_to_display, ui_status_message, ui_reviewer_field, ui_color, ui_editable, ui_is_accepted_flag, default_transcript, gr.update(visible=show_accept_checkbox)
def load_interface_data(page_idx_user_relative, idx_on_page):
# get_sample returns 9 items
audio, text, base_status, saved_reviewer_text, color, editable, accepted_flag, original_dataset_text, accept_cb_visibility_update = get_sample(page_idx_user_relative, idx_on_page, CURRENT_USERNAME)
return (
page_idx_user_relative, # 0
idx_on_page, # 1
audio, # 2
gr.update(value=text, interactive=editable), # 3 transcript_tb
gr.update(value=saved_reviewer_text, elem_classes=[color]), # 4 reviewer_tb
base_status, # 5 status_md
original_dataset_text, # 6 original_transcript_state
accept_cb_visibility_update, # 7 first_phase_accept_cb (visibility part)
accepted_flag # 8 first_phase_accept_cb (value part)
)
def navigate_sample(page_idx_user_relative, idx_on_page, direction: int):
global current_page_data
if current_page_data is None or len(current_page_data) == 0:
user_allowed_range = get_user_allowed_range(CURRENT_USERNAME)
err_msg = "No data loaded. Try reloading or check your assigned range."
if not user_allowed_range or (user_allowed_range[0] > user_allowed_range[1]): # check for invalid range
err_msg = "You have no samples assigned or your range is invalid."
# Return a 9-tuple consistent with load_interface_data's structure
return page_idx_user_relative, idx_on_page, None, gr.update(value="Error", interactive=False), gr.update(value="Error"), err_msg, "", gr.update(visible=False), False
target_idx_on_page = idx_on_page + direction
new_page_idx_user_relative = page_idx_user_relative
new_idx_on_page = target_idx_on_page
user_allowed_range = get_user_allowed_range(CURRENT_USERNAME)
# This check should ideally not be hit if current_page_data exists, but good safeguard
if not user_allowed_range:
# Use get_sample to fetch current state with an error message
current_state = get_sample(page_idx_user_relative, idx_on_page, CURRENT_USERNAME)
# current_state is a 9-tuple: (audio, text, status, rev, color, edit, acc_flag, orig_text, cb_vis_update)
return page_idx_user_relative, idx_on_page, current_state[0], gr.update(value=current_state[1], interactive=current_state[5]), gr.update(value=current_state[3], elem_classes=[current_state[4]]), "Error: No allowed range for navigation.", current_state[7], current_state[8], current_state[6]
if target_idx_on_page < 0: # Moving to previous page or beginning of assignment
if page_idx_user_relative > 0:
new_page_idx_user_relative = page_idx_user_relative - 1
temp_data = load_page_data(new_page_idx_user_relative)
if temp_data is not None and not temp_data.empty:
new_idx_on_page = len(temp_data) - 1
else: # Previous page is empty (shouldn't happen if logic is correct)
current_state = get_sample(page_idx_user_relative, idx_on_page, CURRENT_USERNAME)
status = current_state[2] + " [Already at the first sample of this page/range]"
return page_idx_user_relative, idx_on_page, current_state[0], gr.update(value=current_state[1], interactive=current_state[5]), gr.update(value=current_state[3], elem_classes=[current_state[4]]), status, current_state[7], current_state[8], current_state[6]
else: # Already on first item of first user-relative page
current_state = get_sample(page_idx_user_relative, idx_on_page, CURRENT_USERNAME)
status = current_state[2] + " [At the beginning of your assigned samples]"
return page_idx_user_relative, idx_on_page, current_state[0], gr.update(value=current_state[1], interactive=current_state[5]), gr.update(value=current_state[3], elem_classes=[current_state[4]]), status, current_state[7], current_state[8], current_state[6]
elif target_idx_on_page >= len(current_page_data): # Moving to next page or end of assignment
new_page_idx_user_relative = page_idx_user_relative + 1
temp_data = load_page_data(new_page_idx_user_relative)
if temp_data is not None and not temp_data.empty:
new_idx_on_page = 0
else: # Next user-relative page is empty (means we are at the end of user's allowed samples)
current_abs_idx_check = -1
if current_page_data is not None and not current_page_data.empty and idx_on_page < len(current_page_data):
current_abs_idx_check = current_page_data.iloc[idx_on_page]['absolute_idx']
is_at_very_end = user_allowed_range and current_abs_idx_check != -1 and current_abs_idx_check >= user_allowed_range[1]
current_state = get_sample(page_idx_user_relative, idx_on_page, CURRENT_USERNAME)
status = current_state[2]
if is_at_very_end:
status += " [At the end of your assigned samples]"
else:
status += " [No more samples in this direction (next page empty or end of assignment)]"
return page_idx_user_relative, idx_on_page, current_state[0], gr.update(value=current_state[1], interactive=current_state[5]), gr.update(value=current_state[3], elem_classes=[current_state[4]]), status, current_state[7], current_state[8], current_state[6]
# If navigation is within the current page or to a new valid page/index
return load_interface_data(new_page_idx_user_relative, new_idx_on_page)
def go_next_sample_wrapper(page_idx_user_relative, idx_on_page):
return navigate_sample(page_idx_user_relative, idx_on_page, 1)
def go_prev_sample_wrapper(page_idx_user_relative, idx_on_page):
return navigate_sample(page_idx_user_relative, idx_on_page, -1)
def save_and_next_sample_first_phase(page_idx_user_relative, idx_on_page, current_text, is_accepted_by_reviewer_flag):
user_is_reviewer = get_user_role(CURRENT_USERNAME) == "reviewer"
accepted_to_save = is_accepted_by_reviewer_flag if user_is_reviewer else False
save_msg = save_sample_data(page_idx_user_relative, idx_on_page, current_text, CURRENT_USERNAME, accepted_flag=accepted_to_save)
print(save_msg)
return navigate_sample(page_idx_user_relative, idx_on_page, 1)
def review_and_next_sample_second_phase(page_idx_user_relative, idx_on_page, review_action: str):
feedback_msg = handle_second_phase_action(page_idx_user_relative, idx_on_page, review_action)
print(feedback_msg)
return navigate_sample(page_idx_user_relative, idx_on_page, 1)
def jump_to_absolute_idx(target_abs_idx_str, current_page_idx_user_relative, current_idx_on_page):
global current_page_data
# Fallback return using current state if jump fails
def _fallback_return(status_message_suffix=""):
current_state = get_sample(current_page_idx_user_relative, current_idx_on_page, CURRENT_USERNAME)
status = current_state[2] + status_message_suffix
return current_page_idx_user_relative, current_idx_on_page, current_state[0], gr.update(value=current_state[1], interactive=current_state[5]), gr.update(value=current_state[3], elem_classes=[current_state[4]]), status, current_state[7], current_state[8], current_state[6]
try:
target_abs_idx = int(target_abs_idx_str)
if target_abs_idx < 0: target_abs_idx = 0
user_allowed_range = get_user_allowed_range(CURRENT_USERNAME)
if not user_allowed_range or not is_within_range(target_abs_idx, user_allowed_range):
return _fallback_return(f" [Target index {target_abs_idx} is outside your assigned range {user_allowed_range or 'N/A'}.]")
user_start_abs, _ = user_allowed_range
offset_from_user_start = target_abs_idx - user_start_abs
if offset_from_user_start < 0:
return _fallback_return(f" [Logic Error: Target index {target_abs_idx} has negative offset from user start {user_start_abs}.]")
new_user_relative_page_idx = offset_from_user_start // PAGE_SIZE
# load_page_data updates global current_page_data and current_page
temp_page_data_df = load_page_data(new_user_relative_page_idx)
if temp_page_data_df is None or temp_page_data_df.empty:
return _fallback_return(f" [No data found for your page {new_user_relative_page_idx} (containing abs index {target_abs_idx})].")
# Calculate new_idx_on_page based on the target_abs_idx relative to the start of the loaded page
# The loaded page (current_page_data) now starts at `user_start_abs + new_user_relative_page_idx * PAGE_SIZE`
page_actual_start_abs = current_page_data.iloc[0]['absolute_idx'] if not current_page_data.empty else -1
if page_actual_start_abs == -1: # Should not happen if temp_page_data_df was not empty
return _fallback_return(f" [Error: Page {new_user_relative_page_idx} loaded empty unexpectedly.]")
new_idx_on_page_actual = target_abs_idx - page_actual_start_abs
if not (0 <= new_idx_on_page_actual < len(current_page_data)):
# This means target_abs_idx was in the user's range for this page, but the page didn't actually contain it
# (e.g. dataset ended prematurely within this page's expected span)
# Default to first item on the successfully loaded (but perhaps shorter) page.
print(f"Warning: Target index {target_abs_idx} resulted in out-of-bounds id_on_page ({new_idx_on_page_actual}) for loaded page. Defaulting to 0.")
new_idx_on_page_actual = 0
if current_page_data.empty: # Should be caught above
return _fallback_return(f" [Page {new_user_relative_page_idx} is empty after load attempt for jump.]")
return load_interface_data(new_user_relative_page_idx, new_idx_on_page_actual)
except ValueError:
return _fallback_return(" [Invalid index format for jump.]")
except Exception as e:
import traceback
print(f"Error jumping to index: {str(e)}\n{traceback.format_exc()}")
return _fallback_return(f" [Error jumping to index: {str(e)}]")
def trim_audio_action(page_idx_user_relative, idx_on_page, trim_start_str, trim_end_str):
def _return_current_state_with_message(msg_suffix):
loaded_data = load_interface_data(page_idx_user_relative, idx_on_page)
return (*loaded_data[0:5], loaded_data[5] + f" [{msg_suffix}]", *loaded_data[6:])
if SECOND_PHASE: return _return_current_state_with_message("Trimming disabled in Review Phase.")
if current_page_data is None or idx_on_page < 0 or idx_on_page >= len(current_page_data):
return _return_current_state_with_message("Audio data not available (page error for trim).")
actual_sample_info = current_page_data.iloc[idx_on_page]
absolute_idx = actual_sample_info['absolute_idx']
original_audio_path_info = get_audio_path(actual_sample_info["audio"])
source_basename_for_trimmed_file = os.path.basename(str(original_audio_path_info)) if isinstance(original_audio_path_info, str) else f"sample_raw_data_{absolute_idx}"
audio_seg = None
temp_dir_for_download = None
try:
if isinstance(original_audio_path_info, tuple):
sr, audio_array = original_audio_path_info
if not isinstance(audio_array, np.ndarray): return _return_current_state_with_message("Raw audio data is not a numpy array.")
if audio_array.size == 0: return _return_current_state_with_message("Cannot trim empty audio array.")
audio_array = np.ascontiguousarray(audio_array)
channels = 1 if audio_array.ndim == 1 else (audio_array.shape[1] if audio_array.ndim == 2 and audio_array.shape[1] in [1,2] else (audio_array.shape[0] if audio_array.ndim == 2 and audio_array.shape[0] in [1,2] else 0))
if channels == 0: return _return_current_state_with_message(f"Unsupported audio array shape or channels: {audio_array.shape}")
if audio_array.ndim == 2 and audio_array.shape[0] < audio_array.shape[1] and audio_array.shape[0] in [1, 2]: audio_array = np.ascontiguousarray(audio_array.T)
if audio_array.dtype == np.float32 or audio_array.dtype == np.float64: audio_array_int = (audio_array * np.iinfo(np.int16).max).astype(np.int16)
elif audio_array.dtype == np.int16: audio_array_int = audio_array
elif audio_array.dtype == np.int32: audio_array_int = (audio_array >> 16).astype(np.int16)
else: return _return_current_state_with_message(f"Unsupported numpy array dtype for raw audio: {audio_array.dtype}")
sample_width = audio_array_int.itemsize
audio_seg = AudioSegment(data=audio_array_int.tobytes(), sample_width=sample_width, frame_rate=sr, channels=channels)
elif isinstance(original_audio_path_info, str):
audio_to_load = original_audio_path_info
if not (os.path.exists(audio_to_load) or audio_to_load.startswith("http")): return _return_current_state_with_message("Audio file path is invalid, does not exist, or is not a valid URL.")
if audio_to_load.startswith("http"):
temp_dir_for_download = tempfile.mkdtemp()
url_fname = audio_to_load.split("/")[-1].split("?")[0]
local_fpath = os.path.join(temp_dir_for_download, url_fname or "downloaded_audio.tmp")
response = requests.get(audio_to_load, stream=True); response.raise_for_status()
with open(local_fpath, 'wb') as f: shutil.copyfileobj(response.raw, f)
audio_to_load = local_fpath
audio_seg = AudioSegment.from_file(audio_to_load)
else:
return _return_current_state_with_message("Trimming not supported for this audio source.")
if audio_seg is None: return _return_current_state_with_message("Failed to load audio segment.")
try: start_s, end_s = float(trim_start_str), float(trim_end_str)
except ValueError: return _return_current_state_with_message("Invalid trim times: Start and End must be numbers.")
start_ms, end_ms, audio_duration_ms = int(start_s * 1000), int(end_s * 1000), len(audio_seg)
if not (0 <= start_ms < end_ms and end_ms <= audio_duration_ms):
return _return_current_state_with_message(f"Invalid trim times: start={start_s}s, end={end_s}s for audio of {audio_duration_ms/1000.0:.2f}s.")
trimmed_seg = audio_seg[start_ms:end_ms]
os.makedirs("trimmed_audio", exist_ok=True)
safe_voice_name = re.sub(r'[^\w.-]', '_', source_basename_for_trimmed_file)
trimmed_filename = f"trimmed_{absolute_idx}_{safe_voice_name}"
if not os.path.splitext(trimmed_filename)[1]: trimmed_filename += ".wav"
trimmed_path = os.path.join("trimmed_audio", trimmed_filename)
export_format = os.path.splitext(trimmed_path)[1][1:].lower() or "wav"
trimmed_seg.export(trimmed_path, format=export_format)
dataset_model = load_saved_annotations()
sample = next((s for s in dataset_model.samples or [] if s.id == absolute_idx), None)
if not sample:
sample = Sample(id=absolute_idx, voice_name=os.path.basename(str(get_audio_path(actual_sample_info["audio"]) or f"sample_{absolute_idx}")),
original_subtitle=actual_sample_info["sentence"], annotations=[])
dataset_model.samples = dataset_model.samples or []
dataset_model.samples.append(sample)
now = datetime.now()
annotation = next((a for a in sample.annotations or [] if a.annotator == CURRENT_USERNAME), None)
if not annotation:
annotation = Annotation(annotator=CURRENT_USERNAME, create_at=now, update_at=now)
sample.annotations = sample.annotations or []
sample.annotations.append(annotation)
annotation.audio_trims = [AudioTrim(start=start_s, end=end_s)]
annotation.update_at = now
save_annotations(dataset_model)
# Return full state, but with new audio path and status message
loaded_data_after_trim = load_interface_data(page_idx_user_relative, idx_on_page)
# The audio path needs to be overridden here to show the trimmed path
return (loaded_data_after_trim[0], loaded_data_after_trim[1], trimmed_path,
loaded_data_after_trim[3], loaded_data_after_trim[4],
loaded_data_after_trim[5] + " [Trimmed]",
*loaded_data_after_trim[6:])
except Exception as e:
import traceback
print(f"Error during trim_audio_action for abs_idx {absolute_idx}: {str(e)}\n{traceback.format_exc()}")
return _return_current_state_with_message(f"Error trimming: {str(e)}")
finally:
if temp_dir_for_download and os.path.exists(temp_dir_for_download):
shutil.rmtree(temp_dir_for_download)
def undo_trim_action(page_idx_user_relative, idx_on_page):
def _return_current_state_with_message(msg_suffix):
return load_interface_data(page_idx_user_relative, idx_on_page)[0:5] + \
(load_interface_data(page_idx_user_relative, idx_on_page)[5] + f" [{msg_suffix}]",) + \
load_interface_data(page_idx_user_relative, idx_on_page)[6:]
if SECOND_PHASE: return _return_current_state_with_message("Undo Trim disabled in Review Phase.")
if current_page_data is None or idx_on_page < 0 or idx_on_page >= len(current_page_data):
return _return_current_state_with_message("Audio data not available (page error).")
absolute_idx = current_page_data.iloc[idx_on_page]['absolute_idx']
dataset_model = load_saved_annotations()
sample = next((s for s in dataset_model.samples or [] if s.id == absolute_idx), None)
if sample:
annotation = next((a for a in sample.annotations or [] if a.annotator == CURRENT_USERNAME), None)
if annotation and annotation.audio_trims:
annotation.audio_trims = None
annotation.update_at = datetime.now()
save_annotations(dataset_model)
return _return_current_state_with_message("Trim undone") # Reloads UI showing original audio
def confirm_delete_audio_action(page_idx_user_relative, idx_on_page):
def _return_current_state_with_message(msg_suffix=""): # Default to no suffix if just reloading
loaded_data = load_interface_data(page_idx_user_relative, idx_on_page)
return (*loaded_data[0:5], loaded_data[5] + f" [{msg_suffix}]" if msg_suffix else loaded_data[5], *loaded_data[6:])
if SECOND_PHASE:
return _return_current_state_with_message("Delete disabled in Review Phase.")
if current_page_data is None or idx_on_page < 0 or idx_on_page >= len(current_page_data):
return _return_current_state_with_message("Audio data not available (page error).")
absolute_idx = current_page_data.iloc[idx_on_page]['absolute_idx']
voice_name_original = os.path.basename(str(get_audio_path(current_page_data.iloc[idx_on_page]["audio"]) or f"sample_{absolute_idx}"))
dataset_model = load_saved_annotations()
sample = next((s for s in dataset_model.samples or [] if s.id == absolute_idx), None)
if not sample:
sample = Sample(id=absolute_idx, voice_name=voice_name_original,
original_subtitle=current_page_data.iloc[idx_on_page]["sentence"], annotations=[])
dataset_model.samples = dataset_model.samples or []
dataset_model.samples.append(sample)
sample.ignore_it = True
now = datetime.now()
deleted_text_marker = "AUDIO DELETED (This audio has been removed.)"
annotation = next((a for a in sample.annotations or [] if a.annotator == CURRENT_USERNAME), None)
if annotation:
annotation.annotated_subtitle = deleted_text_marker
annotation.audio_trims = None
annotation.update_at = now
else:
annotation = Annotation(annotator=CURRENT_USERNAME, annotated_subtitle=deleted_text_marker, create_at=now, update_at=now)
sample.annotations = sample.annotations or []
sample.annotations.append(annotation)
save_annotations(dataset_model)
return _return_current_state_with_message() # Reload interface to show deleted status
def sanitize_string(s):
if not isinstance(s, str): s = str(s)
return re.sub(r'[^\w-./]', '_', s)
def sanitize_sentence(s):
if not isinstance(s, str): s = str(s)
return s.encode('utf-8', errors='ignore').decode('utf-8')
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def push_to_hub_with_retry(dataset_dict, repo_id, private=True, token_val=None):
if not token_val:
print("Cannot push to hub: No token provided for push_to_hub_with_retry.")
return
print(f"Pushing dataset to {repo_id}")
dataset_dict.push_to_hub(repo_id, private=private, token=token_val) # Make sure this token has write access
def export_to_huggingface(repo_name_str, hf_token_for_export, progress=gr.Progress()):
if not hf_token_for_export:
return "Export failed: Hugging Face token is missing."
if not repo_name_str or len(repo_name_str.split('/')) != 2:
return "Export failed: Repository name must be in 'username/dataset-name' format."
try:
start_time = time.time()
print(f"Export started at {time.strftime('%Y-%m-%d %H:%M:%S')}")
dataset_model_annotations = load_saved_annotations()
current_total_samples = total_samples
if current_total_samples <= 0:
info = get_dataset_info()
current_total_samples = total_samples
if current_total_samples <= 0:
return "Export failed: Total number of samples is unknown or invalid."
ds_source = load_dataset(HF_DATASET_NAME, split="train", streaming=False, token=hf_token_for_export) # Use token for private source
iteration_limit = len(ds_source)
if iteration_limit != current_total_samples:
print(f"Warning: Source dataset length ({iteration_limit}) mismatches cached total_samples ({current_total_samples}). Using source length for export.")
exported_data_list = []
progress(0, f"Preparing {iteration_limit} samples for export...")
num_processed_from_source = 0
for i, source_sample in enumerate(ds_source):
if i >= iteration_limit: break
num_processed_from_source +=1
absolute_idx = i
audio_entry = source_sample.get("audio")
sentence_val = source_sample.get("sentence", "")
audio_dict_to_export = audio_entry
annotation_data = next((s for s in dataset_model_annotations.samples or [] if s.id == absolute_idx), None)
if annotation_data:
if annotation_data.ignore_it:
sentence_val = "AUDIO DELETED (This audio has been removed.)"
audio_dict_to_export = {"array": np.array([], dtype=np.float32), "sampling_rate": 16000}
else:
best_ann = None
if annotation_data.annotations:
approved_anns = [a for a in annotation_data.annotations if a.second_phase_review_status == "approved"]
if SECOND_PHASE and approved_anns:
best_ann = sorted(approved_anns, key=lambda x: x.second_phase_review_timestamp or datetime.min, reverse=True)[0]
if not best_ann:
accepted_anns = [a for a in annotation_data.annotations if a.is_first_phase_accepted]
best_ann = sorted(accepted_anns, key=lambda x: x.update_at, reverse=True)[0] if accepted_anns else None
if not best_ann:
best_ann = sorted(annotation_data.annotations, key=lambda x: x.update_at, reverse=True)[0]
if best_ann:
sentence_val = best_ann.annotated_subtitle if best_ann.annotated_subtitle is not None else sentence_val
if best_ann.audio_trims and audio_dict_to_export:
original_audio_path_for_trim_lookup = get_audio_path(audio_entry)
original_voice_name_for_trim = os.path.basename(str(original_audio_path_for_trim_lookup or f"sample_{absolute_idx}"))
safe_voice_name_for_trim = re.sub(r'[^\w.-]', '_', original_voice_name_for_trim)
trimmed_fname_base = f"trimmed_{absolute_idx}_{safe_voice_name_for_trim}"
potential_trimmed_path = os.path.join("trimmed_audio", trimmed_fname_base + ".wav")
if os.path.exists(potential_trimmed_path):
try:
arr, sr_trim = sf.read(potential_trimmed_path) # Renamed sr to sr_trim
audio_dict_to_export = {"array": arr, "sampling_rate": sr_trim}
except Exception as e_read_trim:
print(f"Warning: Could not read trimmed audio file {potential_trimmed_path} for sample {absolute_idx}: {e_read_trim}.")
# else: # Keep original audio_dict_to_export
exported_data_list.append({
"audio": audio_dict_to_export,
"sentence": sanitize_sentence(sentence_val)
})
if (i + 1) % 100 == 0:
progress((i + 1) / iteration_limit, f"Processed {i+1}/{iteration_limit} samples")
gc.collect()
if not exported_data_list: return "No data to export after processing."
for item in exported_data_list: # Ensure audio format before creating Dataset
audio_item = item["audio"]
if audio_item is None or (isinstance(audio_item, dict) and audio_item.get('path') is None and audio_item.get('array') is None):
item["audio"] = {"array": np.array([], dtype=np.float32), "sampling_rate": 16000} # Placeholder for missing/deleted
try:
final_dataset = Dataset.from_list(exported_data_list)
# Cast audio, ensure all items have 'array' and 'sampling_rate' or valid 'path'
final_dataset = final_dataset.cast_column("audio", Audio(sampling_rate=16000))
except Exception as e_cast:
print(f"Error during Dataset.from_list or cast_column: {e_cast}")
for idx_problem, problematic_item in enumerate(exported_data_list[:5]):
print(f"Sample item {idx_problem} for export: Audio type {type(problematic_item['audio'])}, Content: {str(problematic_item['audio'])[:200]}")
return f"Export failed during data conversion: {e_cast}."
dataset_dict_export = DatasetDict({"train": final_dataset})
progress(0.95, "Uploading to Hugging Face...")
try:
current_hf_user = whoami(token=hf_token_for_export)['name']
except Exception as e_whoami_export:
return f"Export failed: Could not verify Hugging Face user with provided token: {e_whoami_export}"
dataset_name_part = repo_name_str.split('/')[-1] # Get 'my-annotated-dataset' from 'user/my-annotated-dataset'
target_repo_id = f"{current_hf_user}/{dataset_name_part}"
push_to_hub_with_retry(dataset_dict=dataset_dict_export, repo_id=target_repo_id, private=True, token_val=hf_token_for_export)
end_time = time.time()
print(f"Upload done, total time: {end_time - start_time:.2f}s")
progress(1.0, "Upload complete!")
return f"Exported to huggingface.co/datasets/{target_repo_id}"
except Exception as e:
import traceback
error_msg = f"Export failed: {str(e)}"
print(f"{error_msg}\n{traceback.format_exc()}")
return error_msg
def hf_login(hf_token_val_ui):
global CURRENT_USERNAME, token, current_page_data, total_samples, annotator_ranges, SECOND_PHASE_REVIEW_MAPPING, annotation_count
# Reset session-specific annotation count on new login
annotation_count = 0
# Default state for UI elements on login failure or before successful load
failed_login_transcript_update = gr.update(value="", interactive=False)
def _failed_login_outputs(login_msg_text, reviewer_text_val="N/A"):
# This function constructs the 19-tuple for login outputs
return (
gr.update(visible=True), gr.update(visible=False), # login_container, main_container
gr.update(value=reviewer_text_val), hf_token_val_ui, login_msg_text, # reviewer_tb, hf_token_state, login_message
gr.update(visible=False), failed_login_transcript_update, # save_next_button, transcript_tb (interactive)
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), # trim, undo_trim, delete buttons
gr.update(visible=False, value=False), # first_phase_accept_cb (vis & val)
gr.update(visible=False), gr.update(visible=False), # approve_button, reject_button
0, 0, None, failed_login_transcript_update, # page_idx, idx_on_page, audio, transcript_tb (value)
login_msg_text if "failed" in login_msg_text.lower() or "error" in login_msg_text.lower() else "Please log in.", # status_md
"" # original_transcript_state
)
if not hf_token_val_ui:
return _failed_login_outputs("Login failed: Token cannot be empty.")
try:
print(f"Attempting login with token from UI...")
user_info = whoami(token=hf_token_val_ui)
username = user_info['name']
print(f"whoami successful for user: {username}")
if username in ALLOWED_USERS:
CURRENT_USERNAME = username
token = hf_token_val_ui # IMPORTANT: Set the global token to the one provided in UI
print(f"User '{CURRENT_USERNAME}' is in ALLOWED_USERS. Global token updated.")
# Crucial: Fetch dataset info and ranges AFTER successful login & token set
# Reset total_samples to ensure it's re-fetched with the new token if necessary
total_samples = 0
ds_info = get_dataset_info()
if total_samples <= 0:
return _failed_login_outputs(f"Login OK for {CURRENT_USERNAME}, but failed to get dataset size. Cannot proceed.", reviewer_text_val="Error: No Dataset Size")
annotator_ranges = calculate_annotator_ranges(total_samples, ANNOTATORS)
if SECOND_PHASE:
# SECOND_PHASE_REVIEW_MAPPING.clear() # Clear previous mapping
initialize_second_phase_assignments() # This uses global annotator_ranges
user_allowed_range_check = get_user_allowed_range(CURRENT_USERNAME)
if not user_allowed_range_check or user_allowed_range_check[0] > user_allowed_range_check[1]:
return _failed_login_outputs(f"Login OK for {CURRENT_USERNAME}, but no samples assigned for {'review' if SECOND_PHASE else 'annotation'}.", reviewer_text_val="No Samples Assigned")
current_page_data = load_page_data(0) # page_num_within_user_view = 0
# Check if page loading actually got data
initial_idx_on_page = 0
if current_page_data is None or current_page_data.empty:
print(f"Warning: Initial page load for user {CURRENT_USERNAME} resulted in no data.")
# Attempt to load interface with (0,0) but expect "no data" messages from get_sample
initial_idx_on_page = 0 # or handle as error if no data at all is critical
# load_interface_data returns a 9-tuple
initial_load_tuple = load_interface_data(current_page, initial_idx_on_page)
is_second_phase_active = SECOND_PHASE
# Structure for login_outputs (19 items)
return (
gr.update(visible=False), # 0 login_container
gr.update(visible=True), # 1 main_container
initial_load_tuple[4], # 2 reviewer_tb (gr.update obj from load_interface_data)
hf_token_val_ui, # 3 hf_token_state (value) -> updates the gr.State
f"Login successful! Welcome {CURRENT_USERNAME}. Phase: {'Review' if is_second_phase_active else 'Annotation'}.", # 4 login_message
gr.update(visible=not is_second_phase_active), # 5 save_next_button (visibility)
initial_load_tuple[3], # 6 transcript_tb (gr.update obj for value and interactivity)
gr.update(visible=not is_second_phase_active), # 7 trim_button (visibility)
gr.update(visible=not is_second_phase_active), # 8 undo_trim_button (visibility)
gr.update(visible=not is_second_phase_active), # 9 delete_button (visibility)
gr.update(visible=initial_load_tuple[7]['visible'], value=initial_load_tuple[8]), # 10 first_phase_accept_cb (vis from [7], val from [8])
gr.update(visible=is_second_phase_active), # 11 approve_button (visibility)
gr.update(visible=is_second_phase_active), # 12 reject_button (visibility)
initial_load_tuple[0], # 13 current_page_idx_state (value)
initial_load_tuple[1], # 14 current_idx_on_page_state (value)
initial_load_tuple[2], # 15 audio_player (value or gr.update obj)
initial_load_tuple[3], # 16 transcript_tb (can be same as 6, Gradio handles it)
initial_load_tuple[5], # 17 status_md (value)
initial_load_tuple[6] # 18 original_transcript_state (value)
)
else:
CURRENT_USERNAME = None
token = None # Clear global token if auth fails or user not allowed
return _failed_login_outputs(f"User '{username}' not in allowed user list.", reviewer_text_val="Unauthorized")
except Exception as e:
CURRENT_USERNAME = None
token = None # Clear global token on any login exception
import traceback
login_err_msg = f"Login failed: {str(e)}"
print(f"{login_err_msg}\n{traceback.format_exc()}")
return _failed_login_outputs(login_err_msg, reviewer_text_val="Login Error")
# Gradio Interface (largely same as your previous version)
css = """
.white { background-color: white; color: black; } .yellow { background-color: yellow; color: black; }
.blue { background-color: lightblue; color: black; } .green { background-color: lightgreen; color: black; }
.pink { background-color: pink; color: black; } .red { background-color: #FF7F7F; color: black; }
.orange { background-color: orange; color: black; } .gray { background-color: lightgray; color: black; }
.lightgray { background-color: #f0f0f0; color: black; }
.reviewer-textbox input { text-align: center; font-weight: bold; }
"""
with gr.Blocks(css=css, title="ASR Dataset Labeling Tool") as demo:
# hf_token_state will store the token provided via UI and used for operations.
# Initialize with env var 'token' if available, otherwise empty.
# This gr.State is updated by the hf_login function's output.
hf_token_state = gr.State(os.getenv("hf_token") or "")
current_page_idx_state = gr.State(0)
current_idx_on_page_state = gr.State(0)
original_transcript_state = gr.State("")
with gr.Column(visible=True, elem_id="login_container") as login_container:
gr.Markdown("## HF Authentication")
# hf_token_input default value is also from env var, or empty.
hf_token_input = gr.Textbox(label="Hugging Face Token", type="password", value="")
login_button = gr.Button("Login")
login_message = gr.Markdown("")
with gr.Column(visible=False, elem_id="main_container") as main_container:
gr.Markdown("# ASR Dataset Labeling Interface")
status_md = gr.Markdown("Please log in.")
with gr.Row():
with gr.Column(scale=2):
audio_player = gr.Audio(label="Audio Sample", autoplay=False)
transcript_tb = gr.TextArea(label="Transcript", lines=5, interactive=False)
reviewer_tb = gr.Textbox(label="Annotation Status / Reviewer", interactive=False, elem_classes=["white", "reviewer-textbox"])
with gr.Column(scale=1):
gr.Markdown("### Navigation")
prev_button = gr.Button("← Previous")
next_button = gr.Button("Next (no save)")
save_next_button = gr.Button("Save & Next", variant="primary", visible=not SECOND_PHASE)
first_phase_accept_cb = gr.Checkbox(label="Accept (Reviewer)", visible=False, value=False)
approve_button = gr.Button("Approve & Next", variant="primary", visible=SECOND_PHASE)
reject_button = gr.Button("Reject & Next", variant="stop", visible=SECOND_PHASE)
gr.Markdown("### Audio Tools (Phase 1 only)")
with gr.Row():
trim_start_tb = gr.Textbox(label="Trim Start (s)", placeholder="e.g., 1.5", scale=1)
trim_end_tb = gr.Textbox(label="Trim End (s)", placeholder="e.g., 3.0", scale=1)
trim_button = gr.Button("Trim Audio", visible=not SECOND_PHASE)
undo_trim_button = gr.Button("Undo Trim", visible=not SECOND_PHASE)
delete_button = gr.Button("Mark Audio as Deleted", variant="stop", visible=not SECOND_PHASE)
with gr.Accordion("Advanced Navigation & Export", open=False):
with gr.Row():
jump_text_tb = gr.Textbox(label="Jump to Global Index", placeholder="Enter dataset absolute index")
jump_button = gr.Button("Jump")
with gr.Row():
# Default repo name will be updated more accurately if user logs in.
# For now, a generic placeholder.
hf_repo_name_tb = gr.Textbox(label="Export Repository Name (your_hf_username/dataset-name)", value="your-hf-username/my-annotated-asr-dataset")
hf_export_button = gr.Button("Export to Hugging Face", variant="primary")
hf_export_status_md = gr.Markdown("")
# Outputs for login_button (19 outputs)
login_outputs = [
login_container, main_container, reviewer_tb, hf_token_state, login_message, # 0-4
save_next_button, transcript_tb, trim_button, undo_trim_button, delete_button, # 5-9
first_phase_accept_cb, # 10 (this receives a gr.update obj with 'visible' and 'value' keys)
approve_button, reject_button, # 11-12
current_page_idx_state, current_idx_on_page_state, audio_player, # 13-15
transcript_tb, # 16 (target for transcript value, can be same as #6)
status_md, original_transcript_state # 17-18
]
login_button.click(fn=hf_login, inputs=[hf_token_input], outputs=login_outputs)
# Common outputs for navigation and actions that reload sample view (9 outputs from load_interface_data)
# (page_idx_state, idx_on_page_state, audio_player, transcript_tb_update, reviewer_tb_update,
# status_md, original_transcript_state, first_phase_accept_cb_vis_update, first_phase_accept_cb_val)
navigation_outputs_extended = [
current_page_idx_state, current_idx_on_page_state, # States
audio_player, transcript_tb, reviewer_tb, status_md, original_transcript_state, # UI components
first_phase_accept_cb, # For visibility update (receives gr.update(visible=...))
first_phase_accept_cb # For value update (receives value directly, Gradio checkbox handles it)
]
save_next_button.click(
fn=save_and_next_sample_first_phase,
inputs=[current_page_idx_state, current_idx_on_page_state, transcript_tb, first_phase_accept_cb],
outputs=navigation_outputs_extended
)
next_button.click(
fn=go_next_sample_wrapper,
inputs=[current_page_idx_state, current_idx_on_page_state],
outputs=navigation_outputs_extended
)
prev_button.click(
fn=go_prev_sample_wrapper,
inputs=[current_page_idx_state, current_idx_on_page_state],
outputs=navigation_outputs_extended
)
approve_button.click(
fn=review_and_next_sample_second_phase,
inputs=[current_page_idx_state, current_idx_on_page_state, gr.State("approved")],
outputs=navigation_outputs_extended
)
reject_button.click(
fn=review_and_next_sample_second_phase,
inputs=[current_page_idx_state, current_idx_on_page_state, gr.State("rejected")],
outputs=navigation_outputs_extended
)
trim_button.click(
fn=trim_audio_action,
inputs=[current_page_idx_state, current_idx_on_page_state, trim_start_tb, trim_end_tb],
outputs=navigation_outputs_extended
)
undo_trim_button.click(
fn=undo_trim_action,
inputs=[current_page_idx_state, current_idx_on_page_state],
outputs=navigation_outputs_extended
)
delete_button.click(
fn=confirm_delete_audio_action,
inputs=[current_page_idx_state, current_idx_on_page_state],
outputs=navigation_outputs_extended
)
jump_button.click(
fn=jump_to_absolute_idx,
inputs=[jump_text_tb, current_page_idx_state, current_idx_on_page_state],
outputs=navigation_outputs_extended
)
hf_export_button.click(
fn=export_to_huggingface,
inputs=[hf_repo_name_tb, hf_token_state], # Use hf_token_state here
outputs=[hf_export_status_md],
queue=True
)
if __name__ == "__main__":
# Initializations that don't depend on login token can be here
# For example, setting SECOND_PHASE based on an env var or config file.
# However, total_samples and annotator_ranges should primarily be determined *after* login,
# as they might depend on the dataset accessible by the user's token.
# Example: Override SECOND_PHASE for testing
# os.environ['APP_SECOND_PHASE'] = "True"
# SECOND_PHASE = os.getenv('APP_SECOND_PHASE', 'False').lower() == 'true'
print(f"Application starting. Second phase mode: {SECOND_PHASE}")
# Initial dataset info try (might fail if token needed and not globally set from env)
# This is mostly for informational purposes before login, hf_login will do a more robust fetch.
if total_samples <= 0:
print("Main block: total_samples not yet set. Will be determined after login.")
if SECOND_PHASE:
print("==== APPLICATION LAUNCHING IN SECOND PHASE (REVIEW MODE) ====")
# Initialization of SECOND_PHASE_REVIEW_MAPPING will happen after login,
# once total_samples and annotator_ranges are confirmed.
else:
print("==== APPLICATION LAUNCHING IN FIRST PHASE (ANNOTATION MODE) ====")
demo.queue().launch(debug=True, share=False) # Set share=True for public link |