nathanjc commited on
Commit
7e0dbbe
·
1 Parent(s): 0fd96a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +188 -188
app.py CHANGED
@@ -13,197 +13,197 @@ import torch.backends.cudnn as cudnn
13
  from numpy import random
14
  import numpy as np
15
 
16
- BASE_DIR = "/home/user/app"
17
- os.chdir(BASE_DIR)
18
- os.makedirs(f"{BASE_DIR}/input",exist_ok=True)
19
- os.system(f"git clone https://github.com/WongKinYiu/yolov7.git {BASE_DIR}/yolov7")
20
- sys.path.append(f'{BASE_DIR}/yolov7')
21
-
22
- def detect(opt, save_img=False):
23
- from models.experimental import attempt_load
24
- from utils.datasets import LoadStreams, LoadImages
25
- from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
26
- scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
27
- from utils.plots import plot_one_box
28
- from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
29
 
30
- bbox = {}
31
- source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
32
- save_img = not opt.nosave and not source.endswith('.txt') # save inference images
33
- webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
34
- ('rtsp://', 'rtmp://', 'http://', 'https://'))
35
-
36
- # Directories
37
- save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
38
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
39
-
40
- # Initialize
41
- set_logging()
42
- device = select_device(opt.device)
43
- half = device.type != 'cpu' # half precision only supported on CUDA
44
-
45
- # Load model
46
- model = attempt_load(weights, map_location=device) # load FP32 model
47
- stride = int(model.stride.max()) # model stride
48
- imgsz = check_img_size(imgsz, s=stride) # check img_size
49
-
50
- if trace:
51
- model = TracedModel(model, device, opt.img_size)
52
-
53
- if half:
54
- model.half() # to FP16
55
-
56
- # Second-stage classifier
57
- classify = False
58
- if classify:
59
- modelc = load_classifier(name='resnet101', n=2) # initialize
60
- modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
61
-
62
- # Set Dataloader
63
- vid_path, vid_writer = None, None
64
- if webcam:
65
- view_img = check_imshow()
66
- cudnn.benchmark = True # set True to speed up constant image size inference
67
- dataset = LoadStreams(source, img_size=imgsz, stride=stride)
68
- else:
69
- dataset = LoadImages(source, img_size=imgsz, stride=stride)
70
-
71
- # Get names and colors
72
- names = model.module.names if hasattr(model, 'module') else model.names
73
- colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
74
-
75
- # Run inference
76
- if device.type != 'cpu':
77
- model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
78
- old_img_w = old_img_h = imgsz
79
- old_img_b = 1
80
-
81
- t0 = time.time()
82
- for path, img, im0s, vid_cap in dataset:
83
- img = torch.from_numpy(img).to(device)
84
- img = img.half() if half else img.float() # uint8 to fp16/32
85
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
86
- if img.ndimension() == 3:
87
- img = img.unsqueeze(0)
88
-
89
- # Warmup
90
- if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
91
- old_img_b = img.shape[0]
92
- old_img_h = img.shape[2]
93
- old_img_w = img.shape[3]
94
- for i in range(3):
95
- model(img, augment=opt.augment)[0]
96
-
97
- # Inference
98
- t1 = time_synchronized()
99
- with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
100
- pred = model(img, augment=opt.augment)[0]
101
- t2 = time_synchronized()
102
-
103
- # Apply NMS
104
- pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
105
- t3 = time_synchronized()
106
-
107
- # Apply Classifier
108
- if classify:
109
- pred = apply_classifier(pred, modelc, img, im0s)
110
-
111
- # Process detections
112
- for i, det in enumerate(pred): # detections per image
113
- if webcam: # batch_size >= 1
114
- p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
115
- else:
116
- p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
117
-
118
- p = Path(p) # to Path
119
- save_path = str(save_dir / p.name) # img.jpg
120
- txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
121
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
122
- if len(det):
123
- # Rescale boxes from img_size to im0 size
124
- det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
125
- # print(f"BOXES ---->>>> {det[:, :4]}")
126
- bbox[f"{txt_path.split('/')[4]}"]=(det[:, :4]).numpy()
127
-
128
- # Print results
129
- for c in det[:, -1].unique():
130
- n = (det[:, -1] == c).sum() # detections per class
131
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
132
-
133
- # Write results
134
- for *xyxy, conf, cls in reversed(det):
135
- if save_txt: # Write to file
136
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
137
- line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
138
- with open(txt_path + '.txt', 'a') as f:
139
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
140
-
141
- if save_img or view_img: # Add bbox to image
142
- label = f'{names[int(cls)]} {conf:.2f}'
143
- plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
144
-
145
- # Print time (inference + NMS)
146
- print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
147
-
148
- # Stream results
149
- # if view_img:
150
- # cv2.imshow(str(p), im0)
151
- # cv2.waitKey(1) # 1 millisecond
152
-
153
- # Save results (image with detections)
154
- if save_img:
155
- if dataset.mode == 'image':
156
- # Image.fromarray(im0).show()
157
- cv2.imwrite(save_path, im0)
158
- print(f" The image with the result is saved in: {save_path}")
159
- # else: # 'video' or 'stream'
160
- # if vid_path != save_path: # new video
161
- # vid_path = save_path
162
- # if isinstance(vid_writer, cv2.VideoWriter):
163
- # vid_writer.release() # release previous video writer
164
- # if vid_cap: # video
165
- # fps = vid_cap.get(cv2.CAP_PROP_FPS)
166
- # w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
167
- # h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
168
- # else: # stream
169
- # fps, w, h = 30, im0.shape[1], im0.shape[0]
170
- # save_path += '.mp4'
171
- # vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
172
- # vid_writer.write(im0)
173
-
174
- if save_txt or save_img:
175
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
176
- #print(f"Results saved to {save_dir}{s}")
177
-
178
- print(f'Done. ({time.time() - t0:.3f}s)')
179
- return bbox,save_path
180
-
181
- class options:
182
- def __init__(self, weights, source, img_size=640, conf_thres=0.1, iou_thres=0.45, device='',
183
- view_img=False, save_txt=False, save_conf=False, nosave=False, classes=None,
184
- agnostic_nms=False, augment=False, update=False, project='runs/detect', name='exp',
185
- exist_ok=False, no_trace=False):
186
- self.weights=weights
187
- self.source=source
188
- self.img_size=img_size
189
- self.conf_thres=conf_thres
190
- self.iou_thres=iou_thres
191
- self.device=device
192
- self.view_img=view_img
193
- self.save_txt=save_txt
194
- self.save_conf=save_conf
195
- self.nosave=nosave
196
- self.classes=classes
197
- self.agnostic_nms=agnostic_nms
198
- self.augment=augment
199
- self.update=update
200
- self.project=project
201
- self.name=name
202
- self.exist_ok=exist_ok
203
- self.no_trace=no_trace
204
 
205
  def get_output(image):
206
- image.save(f"{BASE_DIR}/input/image.jpg")
207
  # source = f"{BASE_DIR}/input"
208
  # opt = options(weights='logo_detection.pt',source=source)
209
  # bbox = None
 
13
  from numpy import random
14
  import numpy as np
15
 
16
+ # BASE_DIR = "/home/user/app"
17
+ # os.chdir(BASE_DIR)
18
+ # os.makedirs(f"{BASE_DIR}/input",exist_ok=True)
19
+ # os.system(f"git clone https://github.com/WongKinYiu/yolov7.git {BASE_DIR}/yolov7")
20
+ # sys.path.append(f'{BASE_DIR}/yolov7')
21
+
22
+ # def detect(opt, save_img=False):
23
+ # from models.experimental import attempt_load
24
+ # from utils.datasets import LoadStreams, LoadImages
25
+ # from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
26
+ # scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
27
+ # from utils.plots import plot_one_box
28
+ # from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
29
 
30
+ # bbox = {}
31
+ # source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
32
+ # save_img = not opt.nosave and not source.endswith('.txt') # save inference images
33
+ # webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
34
+ # ('rtsp://', 'rtmp://', 'http://', 'https://'))
35
+
36
+ # # Directories
37
+ # save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
38
+ # (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
39
+
40
+ # # Initialize
41
+ # set_logging()
42
+ # device = select_device(opt.device)
43
+ # half = device.type != 'cpu' # half precision only supported on CUDA
44
+
45
+ # # Load model
46
+ # model = attempt_load(weights, map_location=device) # load FP32 model
47
+ # stride = int(model.stride.max()) # model stride
48
+ # imgsz = check_img_size(imgsz, s=stride) # check img_size
49
+
50
+ # if trace:
51
+ # model = TracedModel(model, device, opt.img_size)
52
+
53
+ # if half:
54
+ # model.half() # to FP16
55
+
56
+ # # Second-stage classifier
57
+ # classify = False
58
+ # if classify:
59
+ # modelc = load_classifier(name='resnet101', n=2) # initialize
60
+ # modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
61
+
62
+ # # Set Dataloader
63
+ # vid_path, vid_writer = None, None
64
+ # if webcam:
65
+ # view_img = check_imshow()
66
+ # cudnn.benchmark = True # set True to speed up constant image size inference
67
+ # dataset = LoadStreams(source, img_size=imgsz, stride=stride)
68
+ # else:
69
+ # dataset = LoadImages(source, img_size=imgsz, stride=stride)
70
+
71
+ # # Get names and colors
72
+ # names = model.module.names if hasattr(model, 'module') else model.names
73
+ # colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
74
+
75
+ # # Run inference
76
+ # if device.type != 'cpu':
77
+ # model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
78
+ # old_img_w = old_img_h = imgsz
79
+ # old_img_b = 1
80
+
81
+ # t0 = time.time()
82
+ # for path, img, im0s, vid_cap in dataset:
83
+ # img = torch.from_numpy(img).to(device)
84
+ # img = img.half() if half else img.float() # uint8 to fp16/32
85
+ # img /= 255.0 # 0 - 255 to 0.0 - 1.0
86
+ # if img.ndimension() == 3:
87
+ # img = img.unsqueeze(0)
88
+
89
+ # # Warmup
90
+ # if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
91
+ # old_img_b = img.shape[0]
92
+ # old_img_h = img.shape[2]
93
+ # old_img_w = img.shape[3]
94
+ # for i in range(3):
95
+ # model(img, augment=opt.augment)[0]
96
+
97
+ # # Inference
98
+ # t1 = time_synchronized()
99
+ # with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
100
+ # pred = model(img, augment=opt.augment)[0]
101
+ # t2 = time_synchronized()
102
+
103
+ # # Apply NMS
104
+ # pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
105
+ # t3 = time_synchronized()
106
+
107
+ # # Apply Classifier
108
+ # if classify:
109
+ # pred = apply_classifier(pred, modelc, img, im0s)
110
+
111
+ # # Process detections
112
+ # for i, det in enumerate(pred): # detections per image
113
+ # if webcam: # batch_size >= 1
114
+ # p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
115
+ # else:
116
+ # p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
117
+
118
+ # p = Path(p) # to Path
119
+ # save_path = str(save_dir / p.name) # img.jpg
120
+ # txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
121
+ # gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
122
+ # if len(det):
123
+ # # Rescale boxes from img_size to im0 size
124
+ # det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
125
+ # # print(f"BOXES ---->>>> {det[:, :4]}")
126
+ # bbox[f"{txt_path.split('/')[4]}"]=(det[:, :4]).numpy()
127
+
128
+ # # Print results
129
+ # for c in det[:, -1].unique():
130
+ # n = (det[:, -1] == c).sum() # detections per class
131
+ # s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
132
+
133
+ # # Write results
134
+ # for *xyxy, conf, cls in reversed(det):
135
+ # if save_txt: # Write to file
136
+ # xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
137
+ # line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
138
+ # with open(txt_path + '.txt', 'a') as f:
139
+ # f.write(('%g ' * len(line)).rstrip() % line + '\n')
140
+
141
+ # if save_img or view_img: # Add bbox to image
142
+ # label = f'{names[int(cls)]} {conf:.2f}'
143
+ # plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
144
+
145
+ # # Print time (inference + NMS)
146
+ # print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
147
+
148
+ # # Stream results
149
+ # # if view_img:
150
+ # # cv2.imshow(str(p), im0)
151
+ # # cv2.waitKey(1) # 1 millisecond
152
+
153
+ # # Save results (image with detections)
154
+ # if save_img:
155
+ # if dataset.mode == 'image':
156
+ # # Image.fromarray(im0).show()
157
+ # cv2.imwrite(save_path, im0)
158
+ # print(f" The image with the result is saved in: {save_path}")
159
+ # # else: # 'video' or 'stream'
160
+ # # if vid_path != save_path: # new video
161
+ # # vid_path = save_path
162
+ # # if isinstance(vid_writer, cv2.VideoWriter):
163
+ # # vid_writer.release() # release previous video writer
164
+ # # if vid_cap: # video
165
+ # # fps = vid_cap.get(cv2.CAP_PROP_FPS)
166
+ # # w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
167
+ # # h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
168
+ # # else: # stream
169
+ # # fps, w, h = 30, im0.shape[1], im0.shape[0]
170
+ # # save_path += '.mp4'
171
+ # # vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
172
+ # # vid_writer.write(im0)
173
+
174
+ # if save_txt or save_img:
175
+ # s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
176
+ # #print(f"Results saved to {save_dir}{s}")
177
+
178
+ # print(f'Done. ({time.time() - t0:.3f}s)')
179
+ # return bbox,save_path
180
+
181
+ # class options:
182
+ # def __init__(self, weights, source, img_size=640, conf_thres=0.1, iou_thres=0.45, device='',
183
+ # view_img=False, save_txt=False, save_conf=False, nosave=False, classes=None,
184
+ # agnostic_nms=False, augment=False, update=False, project='runs/detect', name='exp',
185
+ # exist_ok=False, no_trace=False):
186
+ # self.weights=weights
187
+ # self.source=source
188
+ # self.img_size=img_size
189
+ # self.conf_thres=conf_thres
190
+ # self.iou_thres=iou_thres
191
+ # self.device=device
192
+ # self.view_img=view_img
193
+ # self.save_txt=save_txt
194
+ # self.save_conf=save_conf
195
+ # self.nosave=nosave
196
+ # self.classes=classes
197
+ # self.agnostic_nms=agnostic_nms
198
+ # self.augment=augment
199
+ # self.update=update
200
+ # self.project=project
201
+ # self.name=name
202
+ # self.exist_ok=exist_ok
203
+ # self.no_trace=no_trace
204
 
205
  def get_output(image):
206
+ # image.save(f"{BASE_DIR}/input/image.jpg")
207
  # source = f"{BASE_DIR}/input"
208
  # opt = options(weights='logo_detection.pt',source=source)
209
  # bbox = None