|
import os |
|
import sys |
|
import argparse |
|
import time |
|
from pathlib import Path |
|
import pandas as pd |
|
|
|
import gradio as gr |
|
import cv2 |
|
from PIL import Image |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
from numpy import random |
|
import numpy as np |
|
|
|
BASE_DIR = "/home/user/app" |
|
os.chdir(BASE_DIR) |
|
os.makedirs(f"{BASE_DIR}/input",exist_ok=True) |
|
|
|
sys.path.append(f'{BASE_DIR}/yolov7') |
|
os.system("pip install yolov7-package==0.0.12") |
|
|
|
def detect(opt, save_img=False): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from yolov7_package.models.experimental import attempt_load |
|
from yolov7_package.utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ |
|
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path |
|
from yolov7_package.utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel |
|
from yolov7_package.utils.datasets import LoadStreams, LoadImages |
|
|
|
bbox = {} |
|
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace |
|
save_img = not opt.nosave and not source.endswith('.txt') |
|
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( |
|
('rtsp://', 'rtmp://', 'http://', 'https://')) |
|
|
|
|
|
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) |
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
set_logging() |
|
device = select_device(opt.device) |
|
half = device.type != 'cpu' |
|
|
|
|
|
model = attempt_load(weights, map_location=device) |
|
stride = int(model.stride.max()) |
|
imgsz = check_img_size(imgsz, s=stride) |
|
|
|
if trace: |
|
model = TracedModel(model, device, opt.img_size) |
|
|
|
if half: |
|
model.half() |
|
|
|
|
|
classify = False |
|
if classify: |
|
modelc = load_classifier(name='resnet101', n=2) |
|
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() |
|
|
|
|
|
vid_path, vid_writer = None, None |
|
if webcam: |
|
view_img = check_imshow() |
|
cudnn.benchmark = True |
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride) |
|
else: |
|
dataset = LoadImages(source, img_size=imgsz, stride=stride) |
|
|
|
|
|
names = model.module.names if hasattr(model, 'module') else model.names |
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] |
|
|
|
|
|
if device.type != 'cpu': |
|
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) |
|
old_img_w = old_img_h = imgsz |
|
old_img_b = 1 |
|
|
|
t0 = time.time() |
|
for path, img, im0s, vid_cap in dataset: |
|
img = torch.from_numpy(img).to(device) |
|
img = img.half() if half else img.float() |
|
img /= 255.0 |
|
if img.ndimension() == 3: |
|
img = img.unsqueeze(0) |
|
|
|
|
|
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]): |
|
old_img_b = img.shape[0] |
|
old_img_h = img.shape[2] |
|
old_img_w = img.shape[3] |
|
for i in range(3): |
|
model(img, augment=opt.augment)[0] |
|
|
|
|
|
t1 = time_synchronized() |
|
with torch.no_grad(): |
|
pred = model(img, augment=opt.augment)[0] |
|
t2 = time_synchronized() |
|
|
|
|
|
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) |
|
t3 = time_synchronized() |
|
|
|
|
|
if classify: |
|
pred = apply_classifier(pred, modelc, img, im0s) |
|
|
|
|
|
for i, det in enumerate(pred): |
|
if webcam: |
|
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count |
|
else: |
|
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) |
|
|
|
p = Path(p) |
|
save_path = str(save_dir / p.name) |
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') |
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] |
|
if len(det): |
|
|
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() |
|
|
|
bbox[f"{txt_path.split('/')[4]}"]=(det[:, :4]).numpy() |
|
|
|
|
|
for c in det[:, -1].unique(): |
|
n = (det[:, -1] == c).sum() |
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " |
|
|
|
|
|
for *xyxy, conf, cls in reversed(det): |
|
if save_txt: |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) |
|
with open(txt_path + '.txt', 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
if save_img or view_img: |
|
label = f'{names[int(cls)]} {conf:.2f}' |
|
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1) |
|
|
|
|
|
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if save_img: |
|
if dataset.mode == 'image': |
|
|
|
cv2.imwrite(save_path, im0) |
|
print(f" The image with the result is saved in: {save_path}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if save_txt or save_img: |
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
|
|
|
|
print(f'Done. ({time.time() - t0:.3f}s)') |
|
return bbox,save_path |
|
|
|
class options: |
|
def __init__(self, weights, source, img_size=640, conf_thres=0.1, iou_thres=0.45, device='', |
|
view_img=False, save_txt=False, save_conf=False, nosave=False, classes=None, |
|
agnostic_nms=False, augment=False, update=False, project='runs/detect', name='exp', |
|
exist_ok=False, no_trace=False): |
|
self.weights=weights |
|
self.source=source |
|
self.img_size=img_size |
|
self.conf_thres=conf_thres |
|
self.iou_thres=iou_thres |
|
self.device=device |
|
self.view_img=view_img |
|
self.save_txt=save_txt |
|
self.save_conf=save_conf |
|
self.nosave=nosave |
|
self.classes=classes |
|
self.agnostic_nms=agnostic_nms |
|
self.augment=augment |
|
self.update=update |
|
self.project=project |
|
self.name=name |
|
self.exist_ok=exist_ok |
|
self.no_trace=no_trace |
|
|
|
def get_output(input_image): |
|
input_image.save(f"{BASE_DIR}/input/image.jpg") |
|
source = f"{BASE_DIR}/input" |
|
opt = options(weights='logo_detection.pt',source=source) |
|
bbox = None |
|
with torch.no_grad(): |
|
bbox,output_path = detect(opt) |
|
if os.path.exists(output_path): |
|
return Image.open(output_path) |
|
else: |
|
return input_image |
|
|
|
|
|
demo = gr.Interface(fn=get_output, type='pil', inputs="image", outputs="image") |
|
demo.launch(debug=True) |