nathanjc's picture
Update app.py (#3)
c97a3ea verified
raw
history blame
10.4 kB
import os
import sys
import argparse
import time
from pathlib import Path
import pandas as pd
import gradio as gr
import cv2
from PIL import Image
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import numpy as np
# Add safe globals for PyTorch 2.6+ loading
import numpy
torch.serialization.add_safe_globals([
numpy.core.multiarray._reconstruct,
numpy.core.multiarray.scalar,
numpy.core.numeric.True_,
numpy.core.numeric._frombuffer,
numpy.dtype,
numpy._globals._NoValue,
numpy.core.numeric.asarray,
numpy.ndarray
])
BASE_DIR = "/home/user/app"
os.chdir(BASE_DIR)
os.makedirs(f"{BASE_DIR}/input", exist_ok=True)
sys.path.append(f'{BASE_DIR}/yolov7')
os.system("pip install yolov7-package==0.0.12")
def plot_one_box(x, img, color=None, label=None, line_thickness=3):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def detect(opt, save_img=False):
from yolov7_package import Yolov7Detector
from yolov7_package.models.experimental import attempt_load
from yolov7_package.utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from yolov7_package.utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
from yolov7_package.utils.datasets import LoadStreams, LoadImages
# Monkey patch the attempt_load function to use weights_only=False
original_torch_load = torch.load
def patched_torch_load(w, map_location=None):
return original_torch_load(w, map_location=map_location, weights_only=False)
# Apply the monkey patch
import yolov7_package.models.experimental
yolov7_package.models.experimental.torch.load = patched_torch_load
bbox = {}
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
try:
det = Yolov7Detector(weights=weights, traced=False)
model = attempt_load(weights, map_location=device) # load FP32 model
except Exception as e:
print(f"Error loading model: {e}")
# Fallback: try loading with weights_only=False directly
print("Trying fallback method to load model...")
model = torch.load(weights, map_location=device, weights_only=False)
det = None
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
old_img_w = old_img_h = imgsz
old_img_b = 1
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Warmup
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
old_img_b = img.shape[0]
old_img_h = img.shape[2]
old_img_w = img.shape[3]
for i in range(3):
model(img, augment=opt.augment)[0]
# Inference
t1 = time_synchronized()
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
pred = model(img, augment=opt.augment)[0]
t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t3 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
bbox[f"{txt_path.split('/')[4]}"]=(det[:, :4]).numpy()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
# Print time (inference + NMS)
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
print(f" The image with the result is saved in: {save_path}")
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f'Done. ({time.time() - t0:.3f}s)')
return bbox, save_path
class options:
def __init__(self, weights, source, img_size=640, conf_thres=0.1, iou_thres=0.45, device='',
view_img=False, save_txt=False, save_conf=False, nosave=False, classes=None,
agnostic_nms=False, augment=False, update=False, project='runs/detect', name='exp',
exist_ok=False, no_trace=False):
self.weights=weights
self.source=source
self.img_size=img_size
self.conf_thres=conf_thres
self.iou_thres=iou_thres
self.device=device
self.view_img=view_img
self.save_txt=save_txt
self.save_conf=save_conf
self.nosave=nosave
self.classes=classes
self.agnostic_nms=agnostic_nms
self.augment=augment
self.update=update
self.project=project
self.name=name
self.exist_ok=exist_ok
self.no_trace=no_trace
def get_output(input_image):
try:
# Numpy -> PIL
input_image = Image.fromarray(input_image).convert('RGB')
input_image.save(f"{BASE_DIR}/input/image.jpg")
source = f"{BASE_DIR}/input"
opt = options(weights='logo_detection.pt', source=source)
bbox = None
with torch.no_grad():
bbox, output_path = detect(opt)
if os.path.exists(output_path):
return Image.open(output_path)
else:
return input_image
except Exception as e:
print(f"Error in get_output: {e}")
# Return the original image if there's an error
return input_image
# Add debug prints to check environment
print(f"PyTorch version: {torch.__version__}")
print(f"Current working directory: {os.getcwd()}")
print(f"Files in directory: {os.listdir('.')}")
demo = gr.Interface(fn=get_output, inputs="image", outputs="image")
demo.launch(debug=True)