Dia-1.6B / dia /audio.py
buttercrab's picture
update to faster inference
4aa0f34
import typing as tp
import torch
def build_delay_indices(
B: int, T: int, C: int, delay_pattern: tp.List[int]
) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""
Precompute (t_idx_BxTxC, indices_BTCx3) so that out[t, c] = in[t - delay[c], c].
Negative t_idx => BOS; t_idx >= T => PAD.
"""
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32)
t_idx_BxT = torch.broadcast_to(
torch.arange(T, dtype=torch.int32)[None, :],
[B, T],
)
t_idx_BxTx1 = t_idx_BxT[..., None]
t_idx_BxTxC = t_idx_BxTx1 - delay_arr.view(1, 1, C)
b_idx_BxTxC = torch.broadcast_to(
torch.arange(B, dtype=torch.int32).view(B, 1, 1),
[B, T, C],
)
c_idx_BxTxC = torch.broadcast_to(
torch.arange(C, dtype=torch.int32).view(1, 1, C),
[B, T, C],
)
# We must clamp time indices to [0..T-1] so gather_nd equivalent won't fail
t_clamped_BxTxC = torch.clamp(t_idx_BxTxC, 0, T - 1)
indices_BTCx3 = torch.stack(
[
b_idx_BxTxC.reshape(-1),
t_clamped_BxTxC.reshape(-1),
c_idx_BxTxC.reshape(-1),
],
dim=1,
).long() # Ensure indices are long type for indexing
return t_idx_BxTxC, indices_BTCx3
def apply_audio_delay(
audio_BxTxC: torch.Tensor,
pad_value: int,
bos_value: int,
precomp: tp.Tuple[torch.Tensor, torch.Tensor],
) -> torch.Tensor:
"""
Applies the delay pattern to batched audio tokens using precomputed indices,
inserting BOS where t_idx < 0 and PAD where t_idx >= T.
Args:
audio_BxTxC: [B, T, C] int16 audio tokens (or int32/float)
pad_value: the padding token
bos_value: the BOS token
precomp: (t_idx_BxTxC, indices_BTCx3) from build_delay_indices
Returns:
result_BxTxC: [B, T, C] delayed audio tokens
"""
device = audio_BxTxC.device # Get device from input tensor
t_idx_BxTxC, indices_BTCx3 = precomp
t_idx_BxTxC = t_idx_BxTxC.to(device) # Move precomputed indices to device
indices_BTCx3 = indices_BTCx3.to(device)
# Equivalent of tf.gather_nd using advanced indexing
# Ensure indices are long type if not already (build_delay_indices should handle this)
gathered_flat = audio_BxTxC[
indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]
]
gathered_BxTxC = gathered_flat.view(audio_BxTxC.shape)
# Create masks on the correct device
mask_bos = t_idx_BxTxC < 0 # => place bos_value
mask_pad = t_idx_BxTxC >= audio_BxTxC.shape[1] # => place pad_value
# Create scalar tensors on the correct device
bos_tensor = torch.tensor(bos_value, dtype=audio_BxTxC.dtype, device=device)
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
# If mask_bos, BOS; else if mask_pad, PAD; else original gather
# All tensors should now be on the same device
result_BxTxC = torch.where(
mask_bos, bos_tensor, torch.where(mask_pad, pad_tensor, gathered_BxTxC)
)
return result_BxTxC
def build_revert_indices(
B: int, T: int, C: int, delay_pattern: tp.List[int]
) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""
Precompute indices for the revert operation using PyTorch.
Returns:
A tuple (t_idx_BxTxC, indices_BTCx3) where:
- t_idx_BxTxC is a tensor of shape [B, T, C] computed as time indices plus the delay.
- indices_BTCx3 is a tensor of shape [B*T*C, 3] used for gathering, computed from:
batch indices, clamped time indices, and channel indices.
"""
# Use default device unless specified otherwise; assumes inputs might define device later
device = None # Or determine dynamically if needed, e.g., from a model parameter
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32, device=device)
t_idx_BT1 = torch.broadcast_to(torch.arange(T, device=device).unsqueeze(0), [B, T])
t_idx_BT1 = t_idx_BT1.unsqueeze(-1)
t_idx_BxTxC = torch.minimum(
t_idx_BT1 + delay_arr.view(1, 1, C),
torch.tensor(T - 1, device=device),
)
b_idx_BxTxC = torch.broadcast_to(
torch.arange(B, device=device).view(B, 1, 1), [B, T, C]
)
c_idx_BxTxC = torch.broadcast_to(
torch.arange(C, device=device).view(1, 1, C), [B, T, C]
)
indices_BTCx3 = torch.stack(
[
b_idx_BxTxC.reshape(-1),
t_idx_BxTxC.reshape(-1),
c_idx_BxTxC.reshape(-1),
],
axis=1,
).long() # Ensure indices are long type
return t_idx_BxTxC, indices_BTCx3
def revert_audio_delay(
audio_BxTxC: torch.Tensor,
pad_value: int,
precomp: tp.Tuple[torch.Tensor, torch.Tensor],
T: int,
) -> torch.Tensor:
"""
Reverts a delay pattern from batched audio tokens using precomputed indices (PyTorch version).
Args:
audio_BxTxC: Input delayed audio tensor
pad_value: Padding value for out-of-bounds indices
precomp: Precomputed revert indices tuple containing:
- t_idx_BxTxC: Time offset indices tensor
- indices_BTCx3: Gather indices tensor for original audio
T: Original sequence length before padding
Returns:
Reverted audio tensor with same shape as input
"""
t_idx_BxTxC, indices_BTCx3 = precomp
device = audio_BxTxC.device # Get device from input tensor
# Move precomputed indices to the same device as audio_BxTxC if they aren't already
t_idx_BxTxC = t_idx_BxTxC.to(device)
indices_BTCx3 = indices_BTCx3.to(device)
# Using PyTorch advanced indexing (equivalent to tf.gather_nd or np equivalent)
gathered_flat = audio_BxTxC[
indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]
]
gathered_BxTxC = gathered_flat.view(
audio_BxTxC.size()
) # Use .size() for robust reshaping
# Create pad_tensor on the correct device
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
# Create T tensor on the correct device for comparison
T_tensor = torch.tensor(T, device=device)
result_BxTxC = torch.where(
t_idx_BxTxC >= T_tensor, pad_tensor, gathered_BxTxC
) # Changed np.where to torch.where
return result_BxTxC
@torch.no_grad()
@torch.inference_mode()
def decode(
model,
audio_codes,
):
"""
Decodes the given frames into an output audio waveform
"""
if len(audio_codes) != 1:
raise ValueError(f"Expected one frame, got {len(audio_codes)}")
try:
audio_values = model.quantizer.from_codes(audio_codes)
audio_values = model.decode(audio_values[0])
return audio_values
except Exception as e:
print(f"Error in decode method: {str(e)}")
raise