# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from huggingface_hub import snapshot_download from models.vc.vevo.vevo_utils import * def vevo_style(content_wav_path, style_wav_path, output_path): gen_audio = inference_pipeline.inference_ar_and_fm( src_wav_path=content_wav_path, src_text=None, style_ref_wav_path=style_wav_path, timbre_ref_wav_path=content_wav_path, ) save_audio(gen_audio, output_path=output_path) if __name__ == "__main__": # ===== Device ===== device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # ===== Content Tokenizer ===== local_dir = snapshot_download( repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq32/*"], ) content_tokenizer_ckpt_path = os.path.join( local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl" ) # ===== Content-Style Tokenizer ===== local_dir = snapshot_download( repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"], ) content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192") # ===== Autoregressive Transformer ===== local_dir = snapshot_download( repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"], ) ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json" ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192") # ===== Flow Matching Transformer ===== local_dir = snapshot_download( repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"], ) fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json" fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels") # ===== Vocoder ===== local_dir = snapshot_download( repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"], ) vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json" vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder") # ===== Inference ===== inference_pipeline = VevoInferencePipeline( content_tokenizer_ckpt_path=content_tokenizer_ckpt_path, content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path, ar_cfg_path=ar_cfg_path, ar_ckpt_path=ar_ckpt_path, fmt_cfg_path=fmt_cfg_path, fmt_ckpt_path=fmt_ckpt_path, vocoder_cfg_path=vocoder_cfg_path, vocoder_ckpt_path=vocoder_ckpt_path, device=device, ) content_wav_path = "./models/vc/vevo/wav/source.wav" reference_wav_path = "./models/vc/vevo/wav/arabic_male.wav" output_path = "./models/vc/vevo/wav/output_vevostyle.wav" vevo_style(content_wav_path, reference_wav_path, output_path)