# Copyright (c) 2024 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (vocabulary size) top_k >0: keep only top k tokens with highest probability (top-k filtering). top_p >0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Basic outline taken from https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ assert logits.dim() == 2 # [BATCH_SIZE, VOCAB_SIZE] top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k, dim=1)[0][..., -1, None] logits[indices_to_remove] = filter_value sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # Replace logits to be removed with -inf in the sorted_logits sorted_logits[sorted_indices_to_remove] = filter_value # Then reverse the sorting process by mapping back sorted_logits to their original position logits = torch.gather(sorted_logits, 1, sorted_indices.argsort(-1)) # pred_token = torch.multinomial(F.softmax(logits, -1), 1) # [BATCH_SIZE, 1] return logits def topk_sampling(logits, top_k=50, top_p=1.0, temperature=1.0): """ Perform top-k and top-p sampling on logits. Args: logits (torch.Tensor): The logits to sample from. top_k (int, optional): The number of highest probability tokens to keep for top-k filtering. Must be a positive integer. Defaults to 50. top_p (float, optional): The cumulative probability threshold for nucleus sampling. Must be between 0 and 1. Defaults to 1.0. temperature (float, optional): The scaling factor to adjust the logits distribution. Must be strictly positive. Defaults to 1.0. Returns: torch.Tensor: The sampled token. """ # Adjust logits using temperature if temperature != 1.0: logits = logits / temperature # Top-p/top-k filtering logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) # Sample from the filtered distribution token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) return token