naonauno's picture
Upload 855 files
d66c48f verified
raw
history blame contribute delete
12.3 kB
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from cmath import inf
import io
import librosa
import torch
import json
import tqdm
import numpy as np
import logging
import pickle
import os
import time
from torch.utils.data import Dataset
import torch.nn as nn
import torch.nn.functional as F
from multiprocessing import Pool
import concurrent.futures
from pathlib import Path
from transformers import SeamlessM4TFeatureExtractor
from transformers import Wav2Vec2BertModel
os.chdir("./models/tts/debatts")
import sys
sys.path.append("./models/tts/debatts")
from utils.g2p_new.g2p_new import new_g2p
from torch.nn.utils.rnn import pad_sequence
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class WarningFilter(logging.Filter):
def filter(self, record):
if record.name == "phonemizer" and record.levelno == logging.WARNING:
return False
if record.name == "qcloud_cos.cos_client" and record.levelno == logging.INFO:
return False
if record.name == "jieba" and record.levelno == logging.DEBUG:
return False
return True
filter = WarningFilter()
logging.getLogger("phonemizer").addFilter(filter)
logging.getLogger("qcloud_cos.cos_client").addFilter(filter)
logging.getLogger("jieba").addFilter(filter)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class T2SDataset(torch.utils.data.Dataset):
def __init__(
self,
cfg=None,
):
self.cfg = cfg
self.meta_info_path = "Debatts-Data Summary Json"
with open(self.meta_info_path, "r") as f:
self.meta_info_data = json.load(f)
self.wav_paths = []
self.prompt0_paths = [] # Add prompt0 paths
self.wav_path_index2duration = []
self.wav_path_index2phonelen = []
self.wav_path_index2spkid = []
self.wav_path_index2phoneid = []
self.index2num_frames = []
self.index2lang = []
self.lang2id = {"en": 1, "zh": 2, "ja": 3, "fr": 4, "ko": 5, "de": 6}
for info in self.meta_info_data:
if info["prompt0_wav_path"] == None:
continue
self.wav_paths.append(info["wav_path"])
self.prompt0_paths.append(info["prompt0_wav_path"]) # Add prompt0 path
self.wav_path_index2duration.append(info["duration"])
self.wav_path_index2phonelen.append(info["phone_count"])
self.wav_path_index2spkid.append(info["speaker_id"])
self.wav_path_index2phoneid.append(info["phone_id"])
self.index2num_frames.append(info["duration"] * 50 + len(info["phone_id"]))
lang_id = self.lang2id[info["language"]]
self.index2lang.append(lang_id)
# self.index2num_frames.append(info["duration"] * self.cfg.preprocess.sample_rate)
self.num_frame_indices = np.array(
sorted(
range(len(self.index2num_frames)),
key=lambda k: self.index2num_frames[k],
)
)
self.processor = SeamlessM4TFeatureExtractor.from_pretrained("./w2v-bert-2")
def new_g2p(self, text, language):
return new_g2p(text, language)
def __len__(self):
return self.wav_paths.__len__()
def get_num_frames(self, index):
return (
self.wav_path_index2duration[index] * 50
+ self.wav_path_index2phonelen[index]
)
def __getitem__(self, idx):
wav_path = self.wav_paths[idx]
speech, sr = librosa.load(wav_path, sr=self.cfg.preprocess.sample_rate)
speech = np.pad(
speech,
(
0,
self.cfg.preprocess.hop_size
- len(speech) % self.cfg.preprocess.hop_size,
),
mode="constant",
)
# resample the speech to 16k for feature extraction
if self.cfg.preprocess.sample_rate != 16000:
speech_16k = librosa.resample(
speech, orig_sr=self.cfg.preprocess.sample_rate, target_sr=16000
)
else:
speech_16k = speech
inputs = self.processor(speech_16k, sampling_rate=16000)
# wav 2 bert convert to useful feature
input_features = inputs["input_features"][0]
attention_mask = inputs["attention_mask"][0]
prompt0_wav_path = self.prompt0_paths[idx] # Get prompt0 path
speech_prompt0, sr_prompt0 = librosa.load(
prompt0_wav_path, sr=self.cfg.preprocess.sample_rate
)
speech_prompt0 = np.pad(
speech_prompt0,
(
0,
self.cfg.preprocess.hop_size
- len(speech_prompt0) % self.cfg.preprocess.hop_size,
),
mode="constant",
)
# resample the speech to 16k for feature extraction
if self.cfg.preprocess.sample_rate != 16000:
speech_16k_prompt0 = librosa.resample(
speech_prompt0, orig_sr=self.cfg.preprocess.sample_rate, target_sr=16000
)
else:
speech_16k_prompt0 = speech_prompt0
inputs_prompt0 = self.processor(speech_16k_prompt0, sampling_rate=16000)
input_features_prompt0 = inputs_prompt0["input_features"][0]
attention_mask_prompt0 = inputs_prompt0["attention_mask"][0]
# get speech mask
speech_frames = len(speech) // self.cfg.preprocess.hop_size
mask = np.ones(speech_frames)
speech_frames_prompt0 = len(speech_prompt0) // self.cfg.preprocess.hop_size
mask_prompt0 = np.ones(speech_frames_prompt0)
del speech, speech_16k, speech_prompt0, speech_16k_prompt0
lang_id = self.index2lang[idx]
phone_id = self.wav_path_index2phoneid[idx]
phone_id = torch.tensor(phone_id, dtype=torch.long)
phone_mask = np.ones(len(phone_id))
single_feature = dict()
spk_id = self.wav_path_index2spkid[idx]
single_feature.update({"spk_id": spk_id})
single_feature.update({"lang_id": lang_id})
single_feature.update({"phone_id": phone_id})
single_feature.update({"phone_mask": phone_mask})
single_feature.update(
{
"input_features": input_features,
"attention_mask": attention_mask,
"mask": mask,
"input_features_prompt0": input_features_prompt0,
"attention_mask_prompt0": attention_mask_prompt0,
"mask_prompt0": mask_prompt0,
}
)
return single_feature
class T2SCollator(object):
def __init__(self, cfg):
self.cfg = cfg
def __call__(self, batch):
packed_batch_features = dict()
for key in batch[0].keys():
if "input_features" in key:
packed_batch_features[key] = pad_sequence(
[
(
utt[key].float()
if isinstance(utt[key], torch.Tensor)
else torch.tensor(utt[key]).float()
)
for utt in batch
],
batch_first=True,
)
if "attention_mask" in key:
packed_batch_features[key] = pad_sequence(
[
(
utt[key].float()
if isinstance(utt[key], torch.Tensor)
else torch.tensor(utt[key]).float()
)
for utt in batch
],
batch_first=True,
)
if "mask" in key:
packed_batch_features[key] = pad_sequence(
[
(
utt[key].long()
if isinstance(utt[key], torch.Tensor)
else torch.tensor(utt[key]).long()
)
for utt in batch
],
batch_first=True,
)
if "semantic_code" in key:
packed_batch_features[key] = pad_sequence(
[
(
utt[key].float()
if isinstance(utt[key], torch.Tensor)
else torch.tensor(utt[key]).float()
)
for utt in batch
],
batch_first=True,
)
if key == "phone_id":
packed_batch_features[key] = pad_sequence(
[utt[key].long() for utt in batch],
batch_first=True,
padding_value=1023, # phone vocab size is 1024
)
if key == "phone_mask":
packed_batch_features[key] = pad_sequence(
[torch.tensor(utt[key]).long() for utt in batch], batch_first=True
)
if key == "lang_id":
packed_batch_features[key] = torch.tensor(
[utt[key] for utt in batch]
).long()
if key == "spk_id":
packed_batch_features[key] = torch.tensor(
[utt[key] for utt in batch]
).long()
if key == "spk_emb_input_features":
packed_batch_features[key] = pad_sequence(
[torch.tensor(utt[key]).float() for utt in batch], batch_first=True
)
if key == "spk_emb_attention_mask":
packed_batch_features[key] = pad_sequence(
[torch.tensor(utt[key]).long() for utt in batch], batch_first=True
)
else:
pass
return packed_batch_features
class DownsampleWithMask(nn.Module):
def __init__(self, downsample_factor=2):
super(DownsampleWithMask, self).__init__()
self.downsample_factor = downsample_factor
def forward(self, x, mask):
# input from numpy.ndarray to torch.Tensor
if isinstance(x, np.ndarray):
x = torch.tensor(x, dtype=torch.float32)
if isinstance(mask, np.ndarray):
mask = torch.tensor(mask, dtype=torch.float32)
# print(f"################## x size original {x.shape}################################")
x = x.float()
x = x.permute(1, 0) # to (feature_dim, timestep)
x = x.unsqueeze(1) # add channel dimension: (timestep, 1, feature_dim)
if x.size(-1) < self.downsample_factor:
raise ValueError("Input size must be larger than downsample factor")
# print(f"################## x size before {x.shape}################################")
x = F.avg_pool1d(x, kernel_size=self.downsample_factor)
x = x.squeeze(
1
) # remove channel dimension: (timestep, feature_dim // downsample_factor)
x = x.long()
x = x.permute(1, 0) # to (feature_dim, timestep)
mask = mask.float() # convert mask to float for pooling
mask = mask.unsqueeze(0).unsqueeze(
0
) # add channel dimension: (timestep, 1, feature_dim)
if mask.size(-1) < self.downsample_factor:
raise ValueError("Mask size must be larger than downsample factor")
mask = F.avg_pool1d(
mask, kernel_size=self.downsample_factor, stride=self.downsample_factor
)
mask = mask.squeeze(0).squeeze(
0
) # remove channel dimension: (timestep, feature_dim // downsample_factor)
mask = (mask >= 0.5).long() # if average > 0.5 --> 1, else 0
return x, mask