Spaces:
Paused
Paused
File size: 17,060 Bytes
d66c48f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import numpy as np
import librosa
import torch
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from multiprocessing import Pool, Lock
import random
import torchaudio
NUM_WORKERS = 64
lock = Lock()
SAMPLE_RATE = 16000
def get_metadata(file_path):
metadata = torchaudio.info(file_path)
return file_path, metadata.num_frames
def get_speaker(file_path):
speaker_id = file_path.split(os.sep)[-3]
if "mls" in file_path:
speaker = "mls_" + speaker_id
else:
speaker = "libri_" + speaker_id
return file_path, speaker
def safe_write_to_file(data, file_path, mode="w"):
try:
with lock, open(file_path, mode, encoding="utf-8") as f:
json.dump(data, f)
f.flush()
os.fsync(f.fileno())
except IOError as e:
print(f"Error writing to {file_path}: {e}")
class VCDataset(Dataset):
def __init__(self, args, TRAIN_MODE=True):
print(f"Initializing VCDataset")
if TRAIN_MODE:
directory_list = args.directory_list
else:
directory_list = args.test_directory_list
random.shuffle(directory_list)
self.use_ref_noise = args.use_ref_noise
print(f"use_ref_noise: {self.use_ref_noise}")
# number of workers
print(f"Using {NUM_WORKERS} workers")
self.directory_list = directory_list
print(f"Loading {len(directory_list)} directories: {directory_list}")
self.metadata_cache = {}
self.speaker_cache = {}
self.files = []
# Load all flac files
for directory in directory_list:
print(f"Loading {directory}")
files = self.get_flac_files(directory)
random.shuffle(files)
print(f"Loaded {len(files)} files")
self.files.extend(files)
del files
print(f"Now {len(self.files)} files")
self.meta_data_cache = self.process_files()
self.speaker_cache = self.process_speakers()
print(f"Loaded {len(self.files)} files")
random.shuffle(self.files) # Shuffle the files.
self.filtered_files, self.all_num_frames, index2numframes, index2speakerid = (
self.filter_files()
)
print(f"Loaded {len(self.filtered_files)} files")
self.index2numframes = index2numframes
self.index2speaker = index2speakerid
self.speaker2id = self.create_speaker2id()
self.num_frame_sorted = np.array(sorted(self.all_num_frames))
self.num_frame_indices = np.array(
sorted(
range(len(self.all_num_frames)), key=lambda k: self.all_num_frames[k]
)
)
del self.meta_data_cache, self.speaker_cache
if self.use_ref_noise:
if TRAIN_MODE:
self.noise_filenames = self.get_all_flac(args.noise_dir)
else:
self.noise_filenames = self.get_all_flac(args.test_noise_dir)
def process_files(self):
print(f"Processing metadata...")
files_to_process = [
file for file in self.files if file not in self.metadata_cache
]
if files_to_process:
with Pool(processes=NUM_WORKERS) as pool:
results = list(
tqdm(
pool.imap_unordered(get_metadata, files_to_process),
total=len(files_to_process),
)
)
for file, num_frames in results:
self.metadata_cache[file] = num_frames
else:
print(
f"Skipping processing metadata, loaded {len(self.metadata_cache)} files"
)
return self.metadata_cache
def process_speakers(self):
print(f"Processing speakers...")
files_to_process = [
file for file in self.files if file not in self.speaker_cache
]
if files_to_process:
with Pool(processes=NUM_WORKERS) as pool:
results = list(
tqdm(
pool.imap_unordered(get_speaker, files_to_process),
total=len(files_to_process),
)
)
for file, speaker in results:
self.speaker_cache[file] = speaker
else:
print(
f"Skipping processing speakers, loaded {len(self.speaker_cache)} files"
)
return self.speaker_cache
def get_flac_files(self, directory):
flac_files = []
for root, dirs, files in os.walk(directory):
for file in files:
# flac or wav
if file.endswith(".flac") or file.endswith(".wav"):
flac_files.append(os.path.join(root, file))
return flac_files
def get_all_flac(self, directory):
directories = [
os.path.join(directory, d)
for d in os.listdir(directory)
if os.path.isdir(os.path.join(directory, d))
]
if not directories:
return self.get_flac_files(directory)
with Pool(processes=NUM_WORKERS) as pool:
results = []
for result in tqdm(
pool.imap_unordered(self.get_flac_files, directories),
total=len(directories),
desc="Processing",
):
results.extend(result)
print(f"Found {len(results)} waveform files")
return results
def get_num_frames(self, index):
return self.index2numframes[index]
def filter_files(self):
# Filter files
metadata_cache = self.meta_data_cache
speaker_cache = self.speaker_cache
filtered_files = []
all_num_frames = []
index2numframes = {}
index2speaker = {}
for file in self.files:
num_frames = metadata_cache[file]
if SAMPLE_RATE * 3 <= num_frames <= SAMPLE_RATE * 30:
filtered_files.append(file)
all_num_frames.append(num_frames)
index2speaker[len(filtered_files) - 1] = speaker_cache[file]
index2numframes[len(filtered_files) - 1] = num_frames
return filtered_files, all_num_frames, index2numframes, index2speaker
def create_speaker2id(self):
speaker2id = {}
unique_id = 0
print(f"Creating speaker2id from {len(self.index2speaker)} utterences")
for _, speaker in tqdm(self.index2speaker.items()):
if speaker not in speaker2id:
speaker2id[speaker] = unique_id
unique_id += 1
print(f"Created speaker2id with {len(speaker2id)} speakers")
return speaker2id
def snr_mixer(self, clean, noise, snr):
# Normalizing to -25 dB FS
rmsclean = (clean**2).mean() ** 0.5
epsilon = 1e-10
rmsclean = max(rmsclean, epsilon)
scalarclean = 10 ** (-25 / 20) / rmsclean
clean = clean * scalarclean
rmsnoise = (noise**2).mean() ** 0.5
scalarnoise = 10 ** (-25 / 20) / rmsnoise
noise = noise * scalarnoise
rmsnoise = (noise**2).mean() ** 0.5
# Set the noise level for a given SNR
noisescalar = np.sqrt(rmsclean / (10 ** (snr / 20)) / rmsnoise)
noisenewlevel = noise * noisescalar
noisyspeech = clean + noisenewlevel
noisyspeech_tensor = torch.tensor(noisyspeech, dtype=torch.float32)
return noisyspeech_tensor
def add_noise(self, clean):
# self.noise_filenames: list of noise files
random_idx = np.random.randint(0, np.size(self.noise_filenames))
noise, _ = librosa.load(self.noise_filenames[random_idx], sr=SAMPLE_RATE)
clean = clean.cpu().numpy()
if len(noise) >= len(clean):
noise = noise[0 : len(clean)]
else:
while len(noise) <= len(clean):
random_idx = (random_idx + 1) % len(self.noise_filenames)
newnoise, fs = librosa.load(
self.noise_filenames[random_idx], sr=SAMPLE_RATE
)
noiseconcat = np.append(noise, np.zeros(int(fs * 0.2)))
noise = np.append(noiseconcat, newnoise)
noise = noise[0 : len(clean)]
snr = random.uniform(0.0, 20.0)
noisyspeech = self.snr_mixer(clean=clean, noise=noise, snr=snr)
del noise
return noisyspeech
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
file_path = self.filtered_files[idx]
speech, _ = librosa.load(file_path, sr=SAMPLE_RATE)
if len(speech) > 30 * SAMPLE_RATE:
speech = speech[: 30 * SAMPLE_RATE]
speech = torch.tensor(speech, dtype=torch.float32)
inputs = self._get_reference_vc(speech, hop_length=200)
speaker = self.index2speaker[idx]
speaker_id = self.speaker2id[speaker]
inputs["speaker_id"] = speaker_id
return inputs
def _get_reference_vc(self, speech, hop_length):
pad_size = 1600 - speech.shape[0] % 1600
speech = torch.nn.functional.pad(speech, (0, pad_size))
# hop_size
frame_nums = speech.shape[0] // hop_length
clip_frame_nums = np.random.randint(
int(frame_nums * 0.25), int(frame_nums * 0.45)
)
clip_frame_nums += (frame_nums - clip_frame_nums) % 8
start_frames, end_frames = 0, clip_frame_nums
ref_speech = speech[start_frames * hop_length : end_frames * hop_length]
new_speech = torch.cat(
(speech[: start_frames * hop_length], speech[end_frames * hop_length :]), 0
)
ref_mask = torch.ones(len(ref_speech) // hop_length)
mask = torch.ones(len(new_speech) // hop_length)
if not self.use_ref_noise:
# not use noise
return {
"speech": new_speech,
"ref_speech": ref_speech,
"ref_mask": ref_mask,
"mask": mask,
}
else:
# use reference noise
noisy_ref_speech = self.add_noise(ref_speech)
return {
"speech": new_speech,
"ref_speech": ref_speech,
"noisy_ref_speech": noisy_ref_speech,
"ref_mask": ref_mask,
"mask": mask,
}
class BaseCollator(object):
"""Zero-pads model inputs and targets based on number of frames per step"""
def __init__(self, cfg):
self.cfg = cfg
def __call__(self, batch):
packed_batch_features = dict()
# mel: [b, T, n_mels]
# frame_pitch, frame_energy: [1, T]
# target_len: [1]
# spk_id: [b, 1]
# mask: [b, T, 1]
for key in batch[0].keys():
if key == "target_len":
packed_batch_features["target_len"] = torch.LongTensor(
[b["target_len"] for b in batch]
)
masks = [
torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch
]
packed_batch_features["mask"] = pad_sequence(
masks, batch_first=True, padding_value=0
)
elif key == "phone_len":
packed_batch_features["phone_len"] = torch.LongTensor(
[b["phone_len"] for b in batch]
)
masks = [
torch.ones((b["phone_len"], 1), dtype=torch.long) for b in batch
]
packed_batch_features["phn_mask"] = pad_sequence(
masks, batch_first=True, padding_value=0
)
elif key == "audio_len":
packed_batch_features["audio_len"] = torch.LongTensor(
[b["audio_len"] for b in batch]
)
masks = [
torch.ones((b["audio_len"], 1), dtype=torch.long) for b in batch
]
else:
values = [torch.from_numpy(b[key]) for b in batch]
packed_batch_features[key] = pad_sequence(
values, batch_first=True, padding_value=0
)
return packed_batch_features
class VCCollator(BaseCollator):
def __init__(self, cfg):
BaseCollator.__init__(self, cfg)
self.use_ref_noise = self.cfg.trans_exp.use_ref_noise
print(f"use_ref_noise: {self.use_ref_noise}")
def __call__(self, batch):
packed_batch_features = dict()
# Function to handle tensor copying
def process_tensor(data, dtype=torch.float32):
if isinstance(data, torch.Tensor):
return data.clone().detach()
else:
return torch.tensor(data, dtype=dtype)
# Process 'speech' data
speeches = [process_tensor(b["speech"]) for b in batch]
packed_batch_features["speech"] = pad_sequence(
speeches, batch_first=True, padding_value=0
)
# Process 'ref_speech' data
ref_speeches = [process_tensor(b["ref_speech"]) for b in batch]
packed_batch_features["ref_speech"] = pad_sequence(
ref_speeches, batch_first=True, padding_value=0
)
# Process 'mask' data
masks = [process_tensor(b["mask"]) for b in batch]
packed_batch_features["mask"] = pad_sequence(
masks, batch_first=True, padding_value=0
)
# Process 'ref_mask' data
ref_masks = [process_tensor(b["ref_mask"]) for b in batch]
packed_batch_features["ref_mask"] = pad_sequence(
ref_masks, batch_first=True, padding_value=0
)
# Process 'speaker_id' data
speaker_ids = [
process_tensor(b["speaker_id"], dtype=torch.int64) for b in batch
]
packed_batch_features["speaker_id"] = torch.stack(speaker_ids, dim=0)
if self.use_ref_noise:
# Process 'noisy_ref_speech' data
noisy_ref_speeches = [process_tensor(b["noisy_ref_speech"]) for b in batch]
packed_batch_features["noisy_ref_speech"] = pad_sequence(
noisy_ref_speeches, batch_first=True, padding_value=0
)
return packed_batch_features
def _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
if len(batch) == 0:
return 0
if len(batch) == max_sentences:
return 1
if num_tokens > max_tokens:
return 1
return 0
def batch_by_size(
indices,
num_tokens_fn,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
"""
Yield mini-batches of indices bucketed by size. Batches may contain
sequences of different lengths.
Args:
indices (List[int]): ordered list of dataset indices
num_tokens_fn (callable): function that returns the number of tokens at
a given index
max_tokens (int, optional): max number of tokens in each batch
(default: None).
max_sentences (int, optional): max number of sentences in each
batch (default: None).
required_batch_size_multiple (int, optional): require batch size to
be a multiple of N (default: 1).
"""
bsz_mult = required_batch_size_multiple
sample_len = 0
sample_lens = []
batch = []
batches = []
for i in range(len(indices)):
idx = indices[i]
num_tokens = num_tokens_fn(idx)
sample_lens.append(num_tokens)
sample_len = max(sample_len, num_tokens)
assert (
sample_len <= max_tokens
), "sentence at index {} of size {} exceeds max_tokens " "limit of {}!".format(
idx, sample_len, max_tokens
)
num_tokens = (len(batch) + 1) * sample_len
if _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
mod_len = max(
bsz_mult * (len(batch) // bsz_mult),
len(batch) % bsz_mult,
)
batches.append(batch[:mod_len])
batch = batch[mod_len:]
sample_lens = sample_lens[mod_len:]
sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
batch.append(idx)
if len(batch) > 0:
batches.append(batch)
return batches
|