File size: 3,702 Bytes
a4f1c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import pandas as pd
import streamlit as st
import plotly.graph_objects as go
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split


iris_data = load_iris()
# separate the data into features and target
features = pd.DataFrame(
    iris_data.data, columns=iris_data.feature_names
)
target = pd.Series(iris_data.target)

# split the data into train and test
x_train, x_test, y_train, y_test = train_test_split(
    features, target, test_size=0.2, stratify=target
)


class StreamlitApp:

    def __init__(self):
        self.model = RandomForestClassifier()

    def train_data(self):
        self.model.fit(x_train, y_train)
        return self.model

    def construct_sidebar(self):

        cols = [col for col in features.columns]

        st.sidebar.markdown(
            '<p class="header-style">Iris Data Classification</p>',
            unsafe_allow_html=True
        )
        sepal_length = st.sidebar.selectbox(
            f"Select {cols[0]}",
            sorted(features[cols[0]].unique())
        )

        sepal_width = st.sidebar.selectbox(
            f"Select {cols[1]}",
            sorted(features[cols[1]].unique())
        )

        petal_length = st.sidebar.selectbox(
            f"Select {cols[2]}",
            sorted(features[cols[2]].unique())
        )

        petal_width = st.sidebar.selectbox(
            f"Select {cols[3]}",
            sorted(features[cols[3]].unique())
        )
        values = [sepal_length, sepal_width, petal_length, petal_width]

        return values

    def plot_pie_chart(self, probabilities):
        fig = go.Figure(
            data=[go.Pie(
                    labels=list(iris_data.target_names),
                    values=probabilities[0]
            )]
        )
        fig = fig.update_traces(
            hoverinfo='label+percent',
            textinfo='value',
            textfont_size=15
        )
        return fig

    def construct_app(self):

        self.train_data()
        values = self.construct_sidebar()

        values_to_predict = np.array(values).reshape(1, -1)

        prediction = self.model.predict(values_to_predict)
        prediction_str = iris_data.target_names[prediction[0]]
        probabilities = self.model.predict_proba(values_to_predict)

        st.markdown(
            """
            <style>
            .header-style {
                font-size:25px;
                font-family:sans-serif;
            }
            </style>
            """,
            unsafe_allow_html=True
        )

        st.markdown(
            """
            <style>
            .font-style {
                font-size:20px;
                font-family:sans-serif;
            }
            </style>
            """,
            unsafe_allow_html=True
        )
        st.markdown(
            '<p class="header-style"> Iris Data Predictions </p>',
            unsafe_allow_html=True
        )

        column_1, column_2 = st.columns(2)
        column_1.markdown(
            f'<p class="font-style" >Prediction </p>',
            unsafe_allow_html=True
        )
        column_1.write(f"{prediction_str}")

        column_2.markdown(
            '<p class="font-style" >Probability </p>',
            unsafe_allow_html=True
        )
        column_2.write(f"{probabilities[0][prediction[0]]}")

        fig = self.plot_pie_chart(probabilities)
        st.markdown(
            '<p class="font-style" >Probability Distribution</p>',
            unsafe_allow_html=True
        )
        st.plotly_chart(fig, use_container_width=True)

        return self


sa = StreamlitApp()
sa.construct_app()