Spaces:
Running
Running
Nadav Eden
commited on
Commit
·
b7a2f31
1
Parent(s):
e425a6f
adding vlm support
Browse files- app.py +108 -10
- requirements.txt +4 -0
- utils.py +42 -0
app.py
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
|
3 |
import gradio as gr
|
4 |
-
from
|
|
|
|
|
|
|
|
|
5 |
|
6 |
llms = {
|
7 |
"Qwen2-1.5B": {"model": "Qwen/Qwen2-1.5B-Instruct", "prefix": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
@@ -12,25 +16,31 @@ llms = {
|
|
12 |
"DeepSeek-Coder": {"model": "DeepSeek/DeepSeek-Coder", "prefix": "You are a helpful assistant."},
|
13 |
}
|
14 |
|
15 |
-
vlms =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
def
|
18 |
global messages
|
19 |
tokenizer = AutoTokenizer.from_pretrained(llms[model_id]["model"], trust_remote_code=True)
|
20 |
model = AutoModelForCausalLM.from_pretrained(llms[model_id]["model"], trust_remote_code=True)
|
21 |
-
|
22 |
-
system_prompt = llms[model_id]["prefix"]
|
23 |
|
24 |
if messages is None:
|
25 |
messages = [
|
26 |
-
{"role": "system", "content":
|
27 |
{"role": "user", "content": text_input},
|
28 |
]
|
29 |
else:
|
30 |
messages.append({"role": "user", "content": text_input})
|
31 |
|
32 |
|
33 |
-
text = tokenizer.apply_chat_template(
|
34 |
messages,
|
35 |
tokenize=False,
|
36 |
add_generation_prompt=True,
|
@@ -51,12 +61,86 @@ def run_example(text_input, model_id="Qwen2-1.5B"):
|
|
51 |
|
52 |
return response
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
messages = list()
|
56 |
def reset_conversation():
|
57 |
global messages
|
58 |
messages = list()
|
59 |
|
|
|
|
|
|
|
|
|
|
|
60 |
with gr.Blocks() as demo:
|
61 |
gr.Markdown(
|
62 |
"""
|
@@ -74,20 +158,34 @@ with gr.Blocks() as demo:
|
|
74 |
model_output_text = gr.Textbox(label="Model Output Text")
|
75 |
|
76 |
|
77 |
-
submit_btn.click(
|
78 |
[text_input, model_selector],
|
79 |
[model_output_text])
|
80 |
|
81 |
reset_btn.click(reset_conversation)
|
82 |
|
83 |
with gr.Tab(label="VLM (WIP)"):
|
|
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
86 |
input_img = gr.Image(label="Input Image", type="pil")
|
87 |
-
model_selector = gr.Dropdown(choices=list(vlms.keys()), label="Model", value="
|
|
|
88 |
text_input = gr.Textbox(label="User Prompt")
|
89 |
submit_btn = gr.Button(value="Submit")
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
if __name__ == "__main__":
|
93 |
demo.launch()
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
|
3 |
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor, Qwen2VLForConditionalGeneration
|
6 |
+
from utils import image_to_base64, rescale_bounding_boxes, draw_bounding_boxes, florence_draw_bboxes
|
7 |
+
from qwen_vl_utils import process_vision_info
|
8 |
+
import re
|
9 |
|
10 |
llms = {
|
11 |
"Qwen2-1.5B": {"model": "Qwen/Qwen2-1.5B-Instruct", "prefix": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
|
|
16 |
"DeepSeek-Coder": {"model": "DeepSeek/DeepSeek-Coder", "prefix": "You are a helpful assistant."},
|
17 |
}
|
18 |
|
19 |
+
vlms = {
|
20 |
+
"Florence-2-base": {"model": "microsoft/Florence-2-base", "prefix": "help me"},
|
21 |
+
"Florence-2-large": {"model": "microsoft/Florence-2-large", "prefix": "help me"},
|
22 |
+
"Qwen2-vl-2B": {"model": "Qwen/Qwen2-VL-2B-Instruct", "prefix": "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."},
|
23 |
+
"Qwen2-vl-7B": {"model": "Qwen/Qwen2-VL-7B-Instruct", "prefix": "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."},
|
24 |
+
"Qwen2.5-vl-3B": {"model": "Qwen/Qwen2.5-VL-3B-Instruct", "prefix": "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."}
|
25 |
+
}
|
26 |
+
|
27 |
+
tasks = ["<OD>", "<OCR>", "<CAPTION>", "<OCR_WITH_REGION>"]
|
28 |
|
29 |
+
def run_llm(text_input, model_id="Qwen2-1.5B"):
|
30 |
global messages
|
31 |
tokenizer = AutoTokenizer.from_pretrained(llms[model_id]["model"], trust_remote_code=True)
|
32 |
model = AutoModelForCausalLM.from_pretrained(llms[model_id]["model"], trust_remote_code=True)
|
|
|
|
|
33 |
|
34 |
if messages is None:
|
35 |
messages = [
|
36 |
+
{"role": "system", "content": llms[model_id]["prefix"]},
|
37 |
{"role": "user", "content": text_input},
|
38 |
]
|
39 |
else:
|
40 |
messages.append({"role": "user", "content": text_input})
|
41 |
|
42 |
|
43 |
+
text = tokenizer.apply_chat_template (
|
44 |
messages,
|
45 |
tokenize=False,
|
46 |
add_generation_prompt=True,
|
|
|
61 |
|
62 |
return response
|
63 |
|
64 |
+
def run_vlm(image, text_input, model_id="Qwen2-vl-2B", prompt = "<OD>"):
|
65 |
+
if "Qwen" in model_id:
|
66 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(vlms[model_id]["model"], torch_dtype="auto", device_map="auto")
|
67 |
+
else:
|
68 |
+
model = AutoModelForCausalLM.from_pretrained(vlms[model_id]["model"], trust_remote_code=True)
|
69 |
+
processor = AutoProcessor.from_pretrained(vlms[model_id]["model"], trust_remote_code=True)
|
70 |
+
|
71 |
+
if "Qwen" in model_id:
|
72 |
+
messages = [
|
73 |
+
{
|
74 |
+
"role": "user",
|
75 |
+
"content": [
|
76 |
+
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
|
77 |
+
{"type": "text", "text": vlms[model_id]["prefix"]},
|
78 |
+
{"type": "text", "text": text_input},
|
79 |
+
],
|
80 |
+
}
|
81 |
+
]
|
82 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
83 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
84 |
+
inputs = processor(
|
85 |
+
text=[text],
|
86 |
+
images=image_inputs,
|
87 |
+
videos=video_inputs,
|
88 |
+
padding=True,
|
89 |
+
return_tensors="pt",
|
90 |
+
).to(model.device)
|
91 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
92 |
+
generated_ids_trimmed = [
|
93 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
94 |
+
]
|
95 |
+
output_text = processor.batch_decode(
|
96 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
97 |
+
)
|
98 |
+
print(output_text)
|
99 |
+
pattern = r'\[\s*([.\d]+)\s*,\s*([.\d]+)\s*,\s*([.\d]+)\s*,\s*([.\d]+)\s*\]'
|
100 |
+
matches = re.findall(pattern, str(output_text))
|
101 |
+
parsed_boxes = [[float(num) for num in match] for match in matches]
|
102 |
+
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
|
103 |
+
print(scaled_boxes)
|
104 |
+
draw = draw_bounding_boxes(image, scaled_boxes)
|
105 |
+
else:
|
106 |
+
messages = prompt + text_input
|
107 |
+
inputs = processor(text=messages, images=image, return_tensors="pt").to(model.device)
|
108 |
+
generated_ids = model.generate(
|
109 |
+
input_ids=inputs["input_ids"],
|
110 |
+
pixel_values=inputs["pixel_values"],
|
111 |
+
max_new_tokens=1024,
|
112 |
+
early_stopping=False,
|
113 |
+
do_sample=False,
|
114 |
+
num_beams=3,
|
115 |
+
)
|
116 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
117 |
+
parsed_answer = processor.post_process_generation(
|
118 |
+
generated_text,
|
119 |
+
task=prompt,
|
120 |
+
image_size=(image.width, image.height)
|
121 |
+
)
|
122 |
+
print(parsed_answer)
|
123 |
+
if prompt == '<OD>':
|
124 |
+
parsed_boxes = parsed_answer['<OD>']['bboxes']
|
125 |
+
draw = florence_draw_bboxes(image, parsed_answer)
|
126 |
+
output_text = "None"
|
127 |
+
elif prompt == '<OCR>':
|
128 |
+
output_text = parsed_answer['<OCR>']
|
129 |
+
draw = image
|
130 |
+
parsed_boxes = None
|
131 |
+
|
132 |
+
return output_text, parsed_boxes, draw
|
133 |
|
134 |
messages = list()
|
135 |
def reset_conversation():
|
136 |
global messages
|
137 |
messages = list()
|
138 |
|
139 |
+
def update_task_dropdown(model):
|
140 |
+
if "Florence" in model:
|
141 |
+
return gr.Dropdown(visible=True)
|
142 |
+
return gr.Dropdown(visible=False)
|
143 |
+
|
144 |
with gr.Blocks() as demo:
|
145 |
gr.Markdown(
|
146 |
"""
|
|
|
158 |
model_output_text = gr.Textbox(label="Model Output Text")
|
159 |
|
160 |
|
161 |
+
submit_btn.click(run_llm,
|
162 |
[text_input, model_selector],
|
163 |
[model_output_text])
|
164 |
|
165 |
reset_btn.click(reset_conversation)
|
166 |
|
167 |
with gr.Tab(label="VLM (WIP)"):
|
168 |
+
# taken from https://huggingface.co/spaces/maxiw/Qwen2-VL-Detection/blob/main/app.py
|
169 |
with gr.Row():
|
170 |
with gr.Column():
|
171 |
input_img = gr.Image(label="Input Image", type="pil")
|
172 |
+
model_selector = gr.Dropdown(choices=list(vlms.keys()), label="Model", value="Florence-2-base")
|
173 |
+
task_select = gr.Dropdown(choices=tasks, label="task", value= "<OD>")
|
174 |
text_input = gr.Textbox(label="User Prompt")
|
175 |
submit_btn = gr.Button(value="Submit")
|
176 |
+
with gr.Column():
|
177 |
+
model_output_text = gr.Textbox(label="Model Output Text")
|
178 |
+
parsed_boxes = gr.Textbox(label="Parsed Boxes")
|
179 |
+
annotated_image = gr.Image(label="Annotated Image")
|
180 |
+
|
181 |
+
model_selector.change(update_task_dropdown, inputs=model_selector, outputs=task_select)
|
182 |
+
|
183 |
+
|
184 |
+
submit_btn.click(run_vlm,
|
185 |
+
[input_img, text_input, model_selector, task_select],
|
186 |
+
[model_output_text, parsed_boxes, annotated_image])
|
187 |
+
|
188 |
+
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
torch
|
|
|
3 |
transformers
|
4 |
gradio
|
|
|
|
|
|
|
|
1 |
huggingface_hub==0.25.2
|
2 |
torch
|
3 |
+
torchvision
|
4 |
transformers
|
5 |
gradio
|
6 |
+
Pillow
|
7 |
+
qwen_vl_utils
|
8 |
+
accelerate>=0.26.0
|
utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
from PIL import ImageDraw, ImageFont
|
3 |
+
from io import BytesIO
|
4 |
+
|
5 |
+
def image_to_base64(image):
|
6 |
+
buffered = BytesIO()
|
7 |
+
image.save(buffered, format="PNG")
|
8 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
9 |
+
return img_str
|
10 |
+
|
11 |
+
|
12 |
+
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
|
13 |
+
draw = ImageDraw.Draw(image)
|
14 |
+
for box in bounding_boxes:
|
15 |
+
xmin, ymin, xmax, ymax = box
|
16 |
+
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
|
17 |
+
return image
|
18 |
+
|
19 |
+
def florence_draw_bboxes(image, bounding_boxes, outline_color="red", line_width=2):
|
20 |
+
draw = ImageDraw.Draw(image)
|
21 |
+
#font = ImageFont.truetype("sans-serif.ttf", 16)
|
22 |
+
for bbox, label in zip(bounding_boxes['<OD>']['bboxes'], bounding_boxes['<OD>']['labels']):
|
23 |
+
x1, y1, x2, y2 = bbox
|
24 |
+
draw.rectangle([x1, y1, x2, y2], outline=outline_color, width=line_width)
|
25 |
+
draw.text((x1, x2), label, (255,255,255))
|
26 |
+
return image
|
27 |
+
|
28 |
+
|
29 |
+
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
|
30 |
+
x_scale = original_width / scaled_width
|
31 |
+
y_scale = original_height / scaled_height
|
32 |
+
rescaled_boxes = []
|
33 |
+
for box in bounding_boxes:
|
34 |
+
xmin, ymin, xmax, ymax = box
|
35 |
+
rescaled_box = [
|
36 |
+
xmin * x_scale,
|
37 |
+
ymin * y_scale,
|
38 |
+
xmax * x_scale,
|
39 |
+
ymax * y_scale
|
40 |
+
]
|
41 |
+
rescaled_boxes.append(rescaled_box)
|
42 |
+
return rescaled_boxes
|