|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
from sqlalchemy import ( |
|
create_engine, |
|
MetaData, |
|
Table, |
|
Column, |
|
String, |
|
Integer, |
|
Float, |
|
insert, |
|
inspect, |
|
text, |
|
) |
|
|
|
engine = create_engine("sqlite:///:memory:") |
|
metadata_obj = MetaData() |
|
|
|
def insert_rows_into_table(rows, table, engine=engine): |
|
for row in rows: |
|
stmt = insert(table).values(**row) |
|
with engine.begin() as connection: |
|
connection.execute(stmt) |
|
|
|
table_name = "receipts" |
|
receipts = Table( |
|
table_name, |
|
metadata_obj, |
|
Column("receipt_id", Integer, primary_key=True), |
|
Column("customer_name", String(16), primary_key=True), |
|
Column("price", Float), |
|
Column("tip", Float), |
|
) |
|
metadata_obj.create_all(engine) |
|
|
|
rows = [ |
|
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20}, |
|
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, |
|
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43}, |
|
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00}, |
|
] |
|
insert_rows_into_table(rows, receipts) |
|
demo.launch() |
|
|