import os # Set writable cache directory inside the container os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home' os.environ['TRANSFORMERS_CACHE'] = '/app/hf_home' from fastapi import FastAPI from transformers import AutoModelForCausalLM, AutoTokenizer # Ensure the directory exists os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True) # Load model model_name = "mynuddin/chatbot" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to("cpu") app = FastAPI() @app.post("/generate") def generate_text(prompt: str): inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, max_length=128) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return {"generated_query": generated_text}