File size: 1,057 Bytes
418e6bc
406e834
 
 
2fe6984
 
 
 
418e6bc
2fe6984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406e834
 
 
 
 
 
418e6bc
406e834
2fe6984
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer

# Set cache directories to /tmp which is writable
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
os.environ["HF_HOME"] = "/tmp/hf_home"
os.environ["XDG_CACHE_HOME"] = "/tmp/cache"

# Create cache directories if they don't exist
os.makedirs("/tmp/transformers_cache", exist_ok=True)
os.makedirs("/tmp/hf_home", exist_ok=True)
os.makedirs("/tmp/cache", exist_ok=True)

# Load model with explicit cache directory
model_name = "mynuddin/chatbot"
tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    cache_dir="/tmp/model_cache"
)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    cache_dir="/tmp/model_cache"
).to("cpu")

app = FastAPI()

@app.post("/generate")
def generate_text(prompt: str):
    inputs = tokenizer(prompt, return_tensors="pt")
    output = model.generate(**inputs, max_length=128)
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
    return {"generated_query": generated_text}