Spaces:
Sleeping
Sleeping
File size: 1,057 Bytes
418e6bc 406e834 2fe6984 418e6bc 2fe6984 406e834 418e6bc 406e834 2fe6984 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import os
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer
# Set cache directories to /tmp which is writable
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
os.environ["HF_HOME"] = "/tmp/hf_home"
os.environ["XDG_CACHE_HOME"] = "/tmp/cache"
# Create cache directories if they don't exist
os.makedirs("/tmp/transformers_cache", exist_ok=True)
os.makedirs("/tmp/hf_home", exist_ok=True)
os.makedirs("/tmp/cache", exist_ok=True)
# Load model with explicit cache directory
model_name = "mynuddin/chatbot"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
cache_dir="/tmp/model_cache"
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
cache_dir="/tmp/model_cache"
).to("cpu")
app = FastAPI()
@app.post("/generate")
def generate_text(prompt: str):
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, max_length=128)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return {"generated_query": generated_text} |