Spaces:
Sleeping
Sleeping
File size: 1,175 Bytes
d6a4af5 a0ad636 d6a4af5 a3d4021 d6a4af5 c209aa4 a0ad636 406e834 a0ad636 406e834 a0ad636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import os
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
# Set writable cache directory inside the container
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home'
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_home'
# Ensure the directory exists
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# Define base model and adapter model
base_model_name = "facebook/opt-2.7b"
adapter_name = "mynuddin/chatbot"
# Load base model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16)
# Load PEFT adapter
model = PeftModel.from_pretrained(base_model, adapter_name)
model = model.to("cpu") # Change to "cuda" if running on GPU
model.eval()
app = FastAPI()
@app.post("/generate")
def generate_text(prompt: str):
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
output = model.generate(**inputs, max_length=128)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return {"generated_query": generated_text} |