Image2text / app.py
mynkchaudhry's picture
upload all the files
cc9f8b9
raw
history blame
2.06 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig
import torch
from PIL import Image
# Custom configuration class
class Florence2Config(AutoConfig):
def to_dict(self):
config_dict = super().to_dict()
return config_dict
# Load model and processor with trust_remote_code=True
model = AutoModelForCausalLM.from_pretrained(
"mynkchaudhry/Florence-2-FT-DocVQA",
force_download=True,
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
"mynkchaudhry/Florence-2-FT-DocVQA",
force_download=True,
trust_remote_code=True
)
def generate_response(image, question):
try:
if image.mode != "RGB":
image = image.convert("RGB")
inputs = processor(text=question, images=image, return_tensors="pt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = {key: value.to(device) for key, value in inputs.items()}
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_length=1024,
num_beams=3,
early_stopping=True
)
response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
except Exception as e:
return f"Error processing image: {e}"
# Example images for demonstration (update paths as needed)
examples = [
["demo.png", "what is the address in the page?"],
["demo2.jpg", "what is the date in the page?"],
["demo.png", "what is the name in the page?"]
]
# Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=[gr.Image(type="pil"), gr.Textbox(label="Question")],
outputs=gr.Textbox(label="Response"),
examples=examples,
title="Image to Text Extractor",
description="Upload an image and provide a question. This tool will extract the relevant information from the image based on your question."
)
# Launch the interface
iface.launch()