import os # Set the cache directory to persistent storage os.environ["HF_HOME"] = "/data/.cache/huggingface" from huggingface_hub import snapshot_download import streamlit as st from utils.help import get_disclaimer from utils.format import sec_to_time, fix_latex, get_youtube_embed from utils.rag_utils import load_youtube_data, load_book_data, load_summary, embed_question_sentence_transformer, fixed_knn_retrieval, get_random_question from utils.system_prompts import get_expert_system_prompt, get_synthesis_system_prompt from utils.openai_utils import embed_question_openai, openai_domain_specific_answer_generation, openai_context_integration from utils.llama_utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response st.set_page_config(page_title="AI University") st.markdown(""" """, unsafe_allow_html=True) # --------------------------------------- # paths # --------------------------------------- HOME = "/home/user/app" data_dir = HOME +"/data" private_data_dir = HOME + "/private_data" # Relative path in your Space # getting private data os.makedirs(private_data_dir, exist_ok=True) token = os.getenv("data") local_repo_path = snapshot_download( repo_id="my-ai-university/data", use_auth_token=token, repo_type="dataset", local_dir=private_data_dir, ) adapter_path = HOME + "/LLaMA-TOMMI-1.0/" base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct" base_model_path_3B = "meta-llama/Llama-3.2-3B-Instruct" # --------------------------------------- # --------------------------------------- st.title(":red[AI University] :gray[/] FEM") st.markdown(""" Welcome to AI University — an AI-powered platform designed to address scientific course queries, dynamically adapting to instructors' teaching styles and students' learning needs. This prototype showcases the capabilities of the AI University platform by providing expert answers to queries related to a graduate-level Finite Element Method (FEM) course. """, unsafe_allow_html=True) st.markdown(" ") with st.container(border=False): st.info(""" Heavy traffic or GPU limits may increase response time or cause errors. Disable expert model for faster replies or try again later. """, icon="📌") if 'activate_expert' in st.session_state: st.session_state.activate_expert = st.toggle("Use expert model", value=st.session_state.activate_expert, key="use_expert_model1") else: st.session_state.activate_expert = st.toggle("Use expert model", value=True, key="use_expert_model1", help='More accurate but slower') st.markdown(" ") st.markdown(" ") # st.divider() # Sidebar for settings with st.sidebar: st.header("Settings") with st.expander('Embedding model',expanded=True): # with st.container(border=True): # Embedding model embedding_model = st.selectbox("Choose content embedding model", [ "text-embedding-3-small", # "text-embedding-3-large", "all-MiniLM-L6-v2", # "all-mpnet-base-v2" ], # help=""" # Select the embedding model to use for encoding the retrieved text data. # Options include OpenAI's `text-embedding-3` models and two widely # used SentenceTransformers models. # """ ) st.divider() # with st.container(border=False): st.write('**Video lectures**') if embedding_model == "all-MiniLM-L6-v2": yt_token_choice = st.select_slider("Token per content", [128, 256], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len") elif embedding_model == "text-embedding-3-small": yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len") yt_chunk_tokens = yt_token_choice yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens] top_k_YT = st.slider("Number of content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num") yt_overlap_tokens = yt_chunk_tokens // 4 st.divider() # with st.container(border=False): st.write('**Textbook**') show_textbook = False # show_textbook = st.toggle("Show Textbook Content", value=False) if embedding_model == "all-MiniLM-L6-v2": latex_token_choice = st.select_slider("Token per content", [128, 256], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len") elif embedding_model == "text-embedding-3-small": latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len") latex_chunk_tokens = latex_token_choice latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens] top_k_Latex = st.slider("Number of content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num") # latex_overlap_tokens = latex_chunk_tokens // 4 latex_overlap_tokens = 0 st.write(' ') with st.expander('Expert model', expanded=False): if st.session_state.activate_expert: st.session_state.activate_expert = st.toggle("Use expert model", value=True) else: st.session_state.activate_expert = st.toggle("Use expert model", value=False) show_expert_responce = st.toggle("Show initial expert answer", value=False) st.session_state.expert_model = st.selectbox( "Choose the LLM model", ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B", "gpt-4.1-mini"], index=0, key='a1model' ) if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]: expert_do_sample = st.toggle("Enable Sampling", value=False, key='expert_sample') if expert_do_sample: expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='expert_temp') expert_top_k = st.slider("Top K", 0, 100, 50, key='expert_top_k') expert_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='expert_top_p') else: expert_num_beams = st.slider("Num Beams", 1, 4, 1, key='expert_num_beams') expert_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='expert_max_new_tokens') else: expert_api_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t') expert_api_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p') with st.expander('Synthesis model',expanded=False): # with st.container(border=True): # Choose the LLM model show_yt_context = st.toggle("Show retrieved video content", value=False) st.session_state.synthesis_model = st.selectbox( "Choose the LLM model", ["LLaMA-3.2-3B", "gpt-4o-mini", "gpt-4.1-mini"], # "LLaMA-3.2-11B", index=2, key='a2model' ) if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]: synthesis_do_sample = st.toggle("Enable Sampling", value=False, key='synthesis_sample') if synthesis_do_sample: synthesis_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='synthesis_temp') synthesis_top_k = st.slider("Top K", 0, 100, 50, key='synthesis_top_k') synthesis_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='synthesis_top_p') else: synthesis_num_beams = st.slider("Num Beams", 1, 4, 1, key='synthesis_num_beams') synthesis_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 1500, step=50, key='synthesis_max_new_tokens') else: # Temperature synthesis_api_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t') synthesis_api_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p') # Main content area if "question" not in st.session_state: st.session_state.question = "" text_area_placeholder = st.empty() question_help = "Including details or instructions improves the answer." st.session_state.question = text_area_placeholder.text_area( "**Enter your query about Finite Element Method**", height=120, value=st.session_state.question, help=question_help ) _, col1, col2, _ = st.columns([4, 2, 4, 3]) with col1: submit_button_placeholder = st.empty() with col2: if st.button("Random Question"): while True: random_question = get_random_question(data_dir + "/questions.txt") if random_question != st.session_state.question: break st.session_state.question = random_question text_area_placeholder.text_area( "**Enter your query about Finite Element Method:**", height=120, value=st.session_state.question, help=question_help ) with st.spinner("Loading LLaMA-TOMMI-1.0-11B..."): if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B": if 'tommi_model' not in st.session_state: tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path) st.session_state.tommi_model = tommi_model st.session_state.tommi_tokenizer = tommi_tokenizer with st.spinner("Loading LLaMA-3.2-11B..."): if "LLaMA-3.2-11B" in [st.session_state.expert_model, st.session_state.synthesis_model]: if 'llama_model' not in st.session_state: llama_model, llama_tokenizer = load_base_model(base_model_path) st.session_state.llama_model = llama_model st.session_state.llama_tokenizer = llama_tokenizer with st.spinner("Loading LLaMA-3.2-3B..."): if "LLaMA-3.2-3B" in [st.session_state.expert_model, st.session_state.synthesis_model]: if 'llama_model_3B' not in st.session_state: llama_model_3B, llama_tokenizer_3B = load_base_model(base_model_path_3B) st.session_state.llama_model_3B = llama_model_3B st.session_state.llama_tokenizer_3B = llama_tokenizer_3B # Load YouTube and LaTeX data text_data_YT, context_embeddings_YT = load_youtube_data(data_dir, embedding_model, yt_chunk_tokens, yt_overlap_tokens) text_data_Latex, context_embeddings_Latex = load_book_data(private_data_dir, embedding_model, latex_chunk_tokens, latex_overlap_tokens) summary = load_summary(data_dir + '/KG_FEM_summary.json') if 'question_answered' not in st.session_state: st.session_state.question_answered = False if 'context_by_video' not in st.session_state: st.session_state.context_by_video = {} if 'context_by_section' not in st.session_state: st.session_state.context_by_section = {} if 'answer' not in st.session_state: st.session_state.answer = "" if 'playing_video_id' not in st.session_state: st.session_state.playing_video_id = None if submit_button_placeholder.button("AI Answer", type="primary"): if st.session_state.question == "": st.markdown("") st.write("Please enter a query. :smirk:") st.session_state.question_answered = False else: with st.spinner("Finding relevant contexts..."): if embedding_model == "all-MiniLM-L6-v2": question_embedding = embed_question_sentence_transformer(st.session_state.question, model_name="all-MiniLM-L6-v2") elif embedding_model == "text-embedding-3-small": question_embedding = embed_question_openai(st.session_state.question, embedding_model) initial_max_k = int(0.1 * context_embeddings_YT.shape[0]) idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0) idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0) relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order']) relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order']) st.session_state.context_by_video = {} for context_item in relevant_contexts_YT: video_id = context_item['video_id'] if video_id not in st.session_state.context_by_video: st.session_state.context_by_video[video_id] = [] st.session_state.context_by_video[video_id].append(context_item) st.session_state.context_by_section = {} for context_item in relevant_contexts_Latex: section_id = context_item['section'] if section_id not in st.session_state.context_by_section: st.session_state.context_by_section[section_id] = [] st.session_state.context_by_section[section_id].append(context_item) context = '' for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1): for context_item in contexts: start_time = int(context_item['start']) context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n' st.session_state.yt_context = fix_latex(context) for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1): context += f'Section {i} ({section_id}):\n' for context_item in contexts: context += context_item['text'] + '\n\n' with st.spinner("Answering the question..."): #------------------------- # getting expert answer #------------------------- if st.session_state.activate_expert: if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]: if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B": model_ = st.session_state.tommi_model tokenizer_ = st.session_state.tommi_tokenizer elif st.session_state.expert_model == "LLaMA-3.2-11B": model_ = st.session_state.llama_model tokenizer_ = st.session_state.llama_tokenizer messages = [ {"role": "system", "content": get_expert_system_prompt()}, {"role": "user", "content": st.session_state.question} ] expert_answer = generate_response( model=model_, tokenizer=tokenizer_, messages=messages, tokenizer_max_length=500, do_sample=expert_do_sample, temperature=expert_temperature if expert_do_sample else None, top_k=expert_top_k if expert_do_sample else None, top_p=expert_top_p if expert_do_sample else None, num_beams=expert_num_beams if not expert_do_sample else 1, max_new_tokens=expert_max_new_tokens ) else: # openai expert_answer = openai_domain_specific_answer_generation( get_expert_system_prompt(), st.session_state.question, model=st.session_state.expert_model, temperature=expert_api_temperature, top_p=expert_api_top_p ) st.session_state.expert_answer = fix_latex(expert_answer) else: st.session_state.expert_answer = 'No Expert Answer. Only use the context.' #------------------------- # synthesis responses #------------------------- if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]: if st.session_state.synthesis_model == "LLaMA-3.2-11B": model_s = st.session_state.llama_model tokenizer_s = st.session_state.llama_tokenizer elif st.session_state.synthesis_model == "LLaMA-3.2-3B": model_s = st.session_state.llama_model_3B tokenizer_s = st.session_state.llama_tokenizer_3B synthesis_prompt = f""" Question: {st.session_state.question} Direct Answer: {st.session_state.expert_answer} Retrieved Context: {context} Final Answer: """ messages = [ {"role": "system", "content": get_synthesis_system_prompt("Finite Element Method")}, {"role": "user", "content": synthesis_prompt} ] synthesis_answer = generate_response( model=model_s, tokenizer=tokenizer_s, messages=messages, tokenizer_max_length=30000, do_sample=synthesis_do_sample, temperature=synthesis_temperature if synthesis_do_sample else None, top_k=synthesis_top_k if synthesis_do_sample else None, top_p=synthesis_top_p if synthesis_do_sample else None, num_beams=synthesis_num_beams if not synthesis_do_sample else 1, max_new_tokens=synthesis_max_new_tokens ) else: synthesis_answer = openai_context_integration( get_synthesis_system_prompt("Finite Element Method"), st.session_state.question, st.session_state.expert_answer, context, model=st.session_state.synthesis_model, temperature=synthesis_api_temperature, top_p=synthesis_api_top_p ) # quick check after getting the answer if synthesis_answer.split()[0] == "NOT_ENOUGH_INFO": st.markdown("") st.markdown("#### Query:") st.markdown(fix_latex(st.session_state.question)) if show_expert_responce: st.markdown("#### Initial Expert Answer:") st.markdown(st.session_state.expert_answer) st.markdown("#### Answer:") st.write(":smiling_face_with_tear:") st.markdown(synthesis_answer.split('NOT_ENOUGH_INFO')[1]) st.divider() st.caption(get_disclaimer()) # st.caption("The AI Teaching Assistant project") st.session_state.question_answered = False st.stop() else: st.session_state.answer = fix_latex(synthesis_answer) st.session_state.question_answered = True if st.session_state.question_answered: st.markdown("") st.markdown("#### Query:") st.markdown(fix_latex(st.session_state.question)) if show_expert_responce: st.markdown("#### Initial Expert Answer:") st.markdown(st.session_state.expert_answer) st.markdown("#### Answer:") st.markdown(st.session_state.answer) if show_yt_context: st.markdown("#### Retrieved lecture video transcripts:") st.markdown(st.session_state.yt_context) if top_k_YT > 0: st.markdown("#### Retrieved content in lecture videos") for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1): # with st.expander(f"**Video {i}** | {contexts[0]['title']}", expanded=True): with st.container(border=True): st.markdown(f"**Video {i} | {contexts[0]['title']}**") video_placeholder = st.empty() video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True) st.markdown('') with st.container(border=False): st.markdown("Retrieved Times") cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)]) for j, context_item in enumerate(contexts): start_time = int(context_item['start']) label = sec_to_time(start_time) if cols[j].button(label, key=f"{video_id}_{start_time}"): if st.session_state.playing_video_id is not None: st.session_state.playing_video_id = None video_placeholder.empty() video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True) st.session_state.playing_video_id = video_id with st.expander("Video Summary", expanded=False): # st.write("##### Video Overview:") st.markdown(summary[video_id]) if show_textbook and top_k_Latex > 0: st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis") for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1): # with st.expander(f"**Section {i} | {section_id}**", expanded=True): st.markdown(f"**Section {i} | {section_id}**") for context_item in contexts: st.markdown(context_item['text']) st.divider() st.markdown(" ") st.divider() st.caption(get_disclaimer())