Spaces:
Running
on
L4
Running
on
L4
import json | |
import numpy as np | |
import streamlit as st | |
def load_youtube_data(base_path, embedding_model_name, chunk_tokens, overlap_tokens): | |
embedding_space_file_name = f'{base_path}/yt_embedding_space_{embedding_model_name}_tpc{chunk_tokens}_o{overlap_tokens}.json' | |
with open(embedding_space_file_name, 'r') as json_file: | |
loaded_data = json.load(json_file) | |
embedding_space = np.array(loaded_data['embedding_space']) | |
return loaded_data['chunks'], embedding_space | |
def load_book_data(base_path, embedding_model_name, chunk_tokens, overlap_tokens): | |
embedding_space_file_name = f'{base_path}/latex_embedding_space_by_sections_{embedding_model_name}_tpc{chunk_tokens}_o{overlap_tokens}.json' | |
with open(embedding_space_file_name, 'r') as json_file: | |
loaded_data = json.load(json_file) | |
embedding_space = np.array(loaded_data['embedding_space']) | |
return loaded_data['chunks'], embedding_space | |
def load_summary(file_path): | |
with open(file_path, 'r') as file: | |
transcripts = json.load(file) | |
return transcripts | |
def fixed_knn_retrieval(question_embedding, context_embeddings, top_k=5, min_k=1): | |
question_embedding = np.array(question_embedding) | |
# Normalize | |
question_embedding = question_embedding / np.linalg.norm(question_embedding) | |
context_embeddings = context_embeddings / np.linalg.norm(context_embeddings, axis=1, keepdims=True) | |
# Calculate cosine similarities between the question embedding and all context embeddings. | |
similarities = np.dot(context_embeddings, question_embedding) | |
# Sort the similarities in descending order and get the corresponding indices. | |
sorted_indices = np.argsort(similarities)[::-1] | |
# Select the top_k most similar contexts, ensuring at least min_k contexts are selected. | |
selected_indices = sorted_indices[:max(top_k, min_k)].tolist() | |
return selected_indices | |