mostafa-sh's picture
fix model selection
d340abc
raw
history blame
16.1 kB
import os
import json
import re
import numpy as np
import streamlit as st
# from openai import OpenAI
import random
from utils.help import get_disclaimer
from utils.format import sec_to_time, fix_latex, get_youtube_embed
from utils.rag_utils import load_youtube_data, load_book_data, load_summary, fixed_knn_retrieval, get_random_question
from utils.system_prompts import get_expert_system_prompt, get_synthesis_system_prompt
from utils.openai_utils import embed_question_openai, openai_domain_specific_answer_generation, openai_context_integration
from utils.llama_utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response
st.set_page_config(page_title="AI University")
st.markdown("""
<style>
.video-wrapper {
position: relative;
padding-bottom: 56.25%;
height: 0;
}
.video-wrapper iframe {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""", unsafe_allow_html=True)
# Set the cache directory to persistent storage
os.environ["HF_HOME"] = "/data/.cache/huggingface"
# # client = OpenAI(api_key=st.secrets["general"]["OpenAI_API"])
# client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# ---------------------------------------
base_path = "data/"
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
adapter_path = "./llm_files/llama-tommi-v0.35-weights/"
st.title(":red[AI University]")
st.markdown("### Finite Element Methods")
# st.markdown("### Based on Introduction to Finite Element Methods (FEM) by Prof. Krishna Garikipati")
# st.markdown("##### [YouTube playlist of the FEM lectures](https://www.youtube.com/playlist?list=PLJhG_d-Sp_JHKVRhfTgDqbic_4MHpltXZ)")
st.markdown(":gray[Welcome to] :red[AI University]:gray[, developed at the] :red[University of Southern California]:gray[. This app leverages AI to provide expert answers to queries related to] :red[Finite Element Methods (FEM)]:gray[.]")
# As the content is AI-generated, we strongly recommend independently verifying the information provided.
st.markdown(" ")
st.markdown(" ")
# st.divider()
# Sidebar for settings
with st.sidebar:
st.header("Settings")
# with st.container(border=True):
# Embedding model
model_name = st.selectbox("Choose content embedding model", [
"text-embedding-3-small",
# "text-embedding-3-large",
# "all-MiniLM-L6-v2",
# "all-mpnet-base-v2"
],
# help="""
# Select the embedding model to use for encoding the retrieved text data.
# Options include OpenAI's `text-embedding-3` models and two widely
# used SentenceTransformers models.
# """
)
with st.container(border=True):
st.write('**Video lectures**')
yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
yt_chunk_tokens = yt_token_choice
yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens]
top_k_YT = st.slider("Number of relevant content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num")
yt_overlap_tokens = yt_chunk_tokens // 4
# st.divider()
with st.container(border=True):
st.write('**Textbook**')
show_textbook = False
# show_textbook = st.toggle("Show Textbook Content", value=False)
latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
latex_chunk_tokens = latex_token_choice
latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens]
top_k_Latex = st.slider("Number of relevant content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num")
# latex_overlap_tokens = latex_chunk_tokens // 4
latex_overlap_tokens = 0
st.write(' ')
with st.expander('Expert model', expanded=False):
use_expert_answer = st.toggle("Use expert answer", value=True)
show_expert_responce = st.toggle("Show initial expert answer", value=False)
st.session_state.expert_model = st.selectbox(
"Choose the LLM model",
["gpt-4o-mini",
"gpt-3.5-turbo",
"llama-tommi-0.35"],
key='a1model'
)
if st.session_state.expert_model == "llama-tommi-0.35":
tommi_do_sample = st.toggle("Enable Sampling", value=False, key='tommi_sample')
if tommi_do_sample:
tommi_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='tommi_temp')
tommi_top_k = st.slider("Top K", 0, 100, 50, key='tommi_top_k')
tommi_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='tommi_top_p')
else:
tommi_num_beams = st.slider("Num Beams", 1, 4, 1, key='tommi_num_beams')
tommi_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='tommi_max_new_tokens')
else:
expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t')
expert_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p')
with st.expander('Synthesis model',expanded=False):
# with st.container(border=True):
# Choose the LLM model
model = st.selectbox("Choose the LLM model", ["gpt-4o-mini", "gpt-3.5-turbo"], key='a2model')
# Temperature
integration_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t')
integration_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p')
# Main content area
if "question" not in st.session_state:
st.session_state.question = ""
text_area_placeholder = st.empty()
question_help = "Including details or instructions improves the answer."
st.session_state.question = text_area_placeholder.text_area(
"**Enter your question/query about Finite Element Method**",
height=120,
value=st.session_state.question,
help=question_help
)
_, col1, col2, _ = st.columns([4, 2, 4, 3])
with col1:
submit_button_placeholder = st.empty()
with col2:
if st.button("Random Question"):
while True:
random_question = get_random_question(base_path + "/questions.txt")
if random_question != st.session_state.question:
break
st.session_state.question = random_question
text_area_placeholder.text_area(
"**Enter your question:**",
height=120,
value=st.session_state.question,
help=question_help
)
# Load YouTube and LaTeX data
text_data_YT, context_embeddings_YT = load_youtube_data(base_path, model_name, yt_chunk_tokens, yt_overlap_tokens)
text_data_Latex, context_embeddings_Latex = load_book_data(base_path, model_name, latex_chunk_tokens, latex_overlap_tokens)
summary = load_summary('data/KG_FEM_summary.json')
if 'question_answered' not in st.session_state:
st.session_state.question_answered = False
if 'context_by_video' not in st.session_state:
st.session_state.context_by_video = {}
if 'context_by_section' not in st.session_state:
st.session_state.context_by_section = {}
if 'answer' not in st.session_state:
st.session_state.answer = ""
if 'playing_video_id' not in st.session_state:
st.session_state.playing_video_id = None
if submit_button_placeholder.button("AI Answer", type="primary"):
if st.session_state.question != "":
with st.spinner("Finding relevant contexts..."):
question_embedding = embed_question_openai(st.session_state.question, model_name)
initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)
with st.spinner("Answering the question..."):
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])
st.session_state.context_by_video = {}
for context_item in relevant_contexts_YT:
video_id = context_item['video_id']
if video_id not in st.session_state.context_by_video:
st.session_state.context_by_video[video_id] = []
st.session_state.context_by_video[video_id].append(context_item)
st.session_state.context_by_section = {}
for context_item in relevant_contexts_Latex:
section_id = context_item['section']
if section_id not in st.session_state.context_by_section:
st.session_state.context_by_section[section_id] = []
st.session_state.context_by_section[section_id].append(context_item)
context = ''
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
for context_item in contexts:
start_time = int(context_item['start'])
context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n'
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
context += f'Section {i} ({section_id}):\n'
for context_item in contexts:
context += context_item['text'] + '\n\n'
if use_expert_answer:
if st.session_state.expert_model == "llama-tommi-0.35":
if 'tommi_model' not in st.session_state:
tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path)
st.session_state.tommi_model = tommi_model
st.session_state.tommi_tokenizer = tommi_tokenizer
messages = [
{"role": "system", "content": "You are an expert in Finite Element Methods."},
{"role": "user", "content": st.session_state.question}
]
expert_answer = generate_response(
model=st.session_state.tommi_model,
tokenizer=st.session_state.tommi_tokenizer,
messages=messages,
do_sample=tommi_do_sample,
temperature=tommi_temperature if tommi_do_sample else None,
top_k=tommi_top_k if tommi_do_sample else None,
top_p=tommi_top_p if tommi_do_sample else None,
num_beams=tommi_num_beams if not tommi_do_sample else 1,
max_new_tokens=tommi_max_new_tokens
)
elif st.session_state.expert_model in ["gpt-4o-mini", "gpt-3.5-turbo"]:
expert_answer = openai_domain_specific_answer_generation(
get_expert_system_prompt(),
st.session_state.question,
model=model,
temperature=expert_temperature,
top_p=expert_top_p
)
st.session_state.expert_answer = fix_latex(expert_answer)
else:
st.session_state.expert_answer = 'No Expert Answer. Only use the context.'
answer = openai_context_integration(
get_synthesis_system_prompt("Finite Element Method"),
st.session_state.question,
st.session_state.expert_answer,
context,
model=model,
temperature=integration_temperature,
top_p=integration_top_p
)
answer = fix_latex(answer)
if answer.split()[0] == "NOT_ENOUGH_INFO":
st.markdown("")
st.markdown("#### Query:")
st.markdown(fix_latex(st.session_state.question))
if show_expert_responce:
st.markdown("#### Initial Expert Answer:")
st.markdown(st.session_state.expert_answer)
st.markdown("#### Answer:")
st.write(":smiling_face_with_tear:")
st.markdown(answer.split('NOT_ENOUGH_INFO')[1])
st.divider()
st.caption(get_disclaimer())
# st.caption("The AI Teaching Assistant project")
st.session_state.question_answered = False
st.stop()
else:
st.session_state.answer = answer
st.session_state.question_answered = True
else:
st.markdown("")
st.write("Please enter a question. :smirk:")
st.session_state.question_answered = False
if st.session_state.question_answered:
st.markdown("")
st.markdown("#### Query:")
st.markdown(fix_latex(st.session_state.question))
if show_expert_responce:
st.markdown("#### Initial Expert Answer:")
st.markdown(st.session_state.expert_answer)
st.markdown("#### Answer:")
st.markdown(st.session_state.answer)
if top_k_YT > 0:
st.markdown("#### Retrieved content in lecture videos")
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
# with st.expander(f"**Video {i}** | {contexts[0]['title']}", expanded=True):
with st.container(border=True):
st.markdown(f"**Video {i} | {contexts[0]['title']}**")
video_placeholder = st.empty()
video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True)
st.markdown('')
with st.container(border=False):
st.markdown("Retrieved Times")
cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)])
for j, context_item in enumerate(contexts):
start_time = int(context_item['start'])
label = sec_to_time(start_time)
if cols[j].button(label, key=f"{video_id}_{start_time}"):
if st.session_state.playing_video_id is not None:
st.session_state.playing_video_id = None
video_placeholder.empty()
video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True)
st.session_state.playing_video_id = video_id
with st.expander("Video Summary", expanded=False):
# st.write("##### Video Overview:")
st.markdown(summary[video_id])
if show_textbook and top_k_Latex > 0:
st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis")
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
# with st.expander(f"**Section {i} | {section_id}**", expanded=True):
st.markdown(f"**Section {i} | {section_id}**")
for context_item in contexts:
st.markdown(context_item['text'])
st.divider()
st.markdown(" ")
st.divider()
st.caption(get_disclaimer())