mostafa-sh's picture
update information
9f756e6
raw
history blame
16.3 kB
import os
# Set the cache directory to persistent storage
os.environ["HF_HOME"] = "/data/.cache/huggingface"
import streamlit as st
from utils.help import get_disclaimer
from utils.format import sec_to_time, fix_latex, get_youtube_embed
from utils.rag_utils import load_youtube_data, load_book_data, load_summary, fixed_knn_retrieval, get_random_question
from utils.system_prompts import get_expert_system_prompt, get_synthesis_system_prompt
from utils.openai_utils import embed_question_openai, openai_domain_specific_answer_generation, openai_context_integration
from utils.llama_utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response
st.set_page_config(page_title="AI University")
st.markdown("""
<style>
.video-wrapper {
position: relative;
padding-bottom: 56.25%;
height: 0;
}
.video-wrapper iframe {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""", unsafe_allow_html=True)
# ---------------------------------------
# paths
# ---------------------------------------
base_path = "data/"
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
adapter_path = "./LLaMA-TOMMI-1.0/"
st.title(":red[AI University] :gray[/] FEM")
# st.markdown("### Finite Element Method")
st.markdown("Welcome to :red[AI University]—an AI-powered platform designed to address scientific course queries, dynamically adapting to instructors' teaching styles and students' learning needs. This prototype demonstrates the capabilities of the AI University platform by providing expert answers to queries related to a graduate-level :red[Finite Element Method (FEM)] course")
# st.markdown(":gray[Welcome to] :red[AI University]:gray[, developed at the] :red[University of Southern California]:gray[. This app leverages AI to provide expert answers to queries related to] :red[Finite Element Method (FEM)]:gray[.]")
# st.markdown(":gray[Welcome to] :red[AI University]:gray[, developed at the] :red[University of Southern California]:gray[. This app leverages AI to provide expert answers to queries related to] :red[Finite Element Methods (FEM)]:gray[.]")
# As the content is AI-generated, we strongly recommend independently verifying the information provided.
st.markdown(" ")
st.markdown(" ")
# st.divider()
# Sidebar for settings
with st.sidebar:
st.header("Settings")
# with st.container(border=True):
# Embedding model
model_name = st.selectbox("Choose content embedding model", [
"text-embedding-3-small",
# "text-embedding-3-large",
# "all-MiniLM-L6-v2",
# "all-mpnet-base-v2"
],
# help="""
# Select the embedding model to use for encoding the retrieved text data.
# Options include OpenAI's `text-embedding-3` models and two widely
# used SentenceTransformers models.
# """
)
with st.container(border=True):
st.write('**Video lectures**')
yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
yt_chunk_tokens = yt_token_choice
yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens]
top_k_YT = st.slider("Number of relevant content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num")
yt_overlap_tokens = yt_chunk_tokens // 4
# st.divider()
with st.container(border=True):
st.write('**Textbook**')
show_textbook = False
# show_textbook = st.toggle("Show Textbook Content", value=False)
latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
latex_chunk_tokens = latex_token_choice
latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens]
top_k_Latex = st.slider("Number of relevant content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num")
# latex_overlap_tokens = latex_chunk_tokens // 4
latex_overlap_tokens = 0
st.write(' ')
with st.expander('Expert model', expanded=False):
use_expert_answer = st.toggle("Use expert answer", value=True)
show_expert_responce = st.toggle("Show initial expert answer", value=False)
st.session_state.expert_model = st.selectbox(
"Choose the LLM model",
["gpt-4o-mini",
"gpt-3.5-turbo",
"LLaMA-TOMMI-1.0"],
key='a1model'
)
if st.session_state.expert_model == "LLaMA-TOMMI-1.0":
tommi_do_sample = st.toggle("Enable Sampling", value=False, key='tommi_sample')
if tommi_do_sample:
tommi_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='tommi_temp')
tommi_top_k = st.slider("Top K", 0, 100, 50, key='tommi_top_k')
tommi_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='tommi_top_p')
else:
tommi_num_beams = st.slider("Num Beams", 1, 4, 1, key='tommi_num_beams')
tommi_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='tommi_max_new_tokens')
else:
expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t')
expert_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p')
with st.expander('Synthesis model',expanded=False):
# with st.container(border=True):
# Choose the LLM model
model = st.selectbox("Choose the LLM model", ["gpt-4o-mini", "gpt-3.5-turbo"], key='a2model')
# Temperature
integration_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t')
integration_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p')
# Main content area
if "question" not in st.session_state:
st.session_state.question = ""
text_area_placeholder = st.empty()
question_help = "Including details or instructions improves the answer."
st.session_state.question = text_area_placeholder.text_area(
"**Enter your question/query about Finite Element Method**",
height=120,
value=st.session_state.question,
help=question_help
)
_, col1, col2, _ = st.columns([4, 2, 4, 3])
with col1:
submit_button_placeholder = st.empty()
with col2:
if st.button("Random Question"):
while True:
random_question = get_random_question(base_path + "/questions.txt")
if random_question != st.session_state.question:
break
st.session_state.question = random_question
text_area_placeholder.text_area(
"**Enter your question:**",
height=120,
value=st.session_state.question,
help=question_help
)
# Load YouTube and LaTeX data
text_data_YT, context_embeddings_YT = load_youtube_data(base_path, model_name, yt_chunk_tokens, yt_overlap_tokens)
text_data_Latex, context_embeddings_Latex = load_book_data(base_path, model_name, latex_chunk_tokens, latex_overlap_tokens)
summary = load_summary('data/KG_FEM_summary.json')
if 'question_answered' not in st.session_state:
st.session_state.question_answered = False
if 'context_by_video' not in st.session_state:
st.session_state.context_by_video = {}
if 'context_by_section' not in st.session_state:
st.session_state.context_by_section = {}
if 'answer' not in st.session_state:
st.session_state.answer = ""
if 'playing_video_id' not in st.session_state:
st.session_state.playing_video_id = None
if submit_button_placeholder.button("AI Answer", type="primary"):
if st.session_state.question != "":
with st.spinner("Finding relevant contexts..."):
question_embedding = embed_question_openai(st.session_state.question, model_name)
initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)
with st.spinner("Answering the question..."):
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])
st.session_state.context_by_video = {}
for context_item in relevant_contexts_YT:
video_id = context_item['video_id']
if video_id not in st.session_state.context_by_video:
st.session_state.context_by_video[video_id] = []
st.session_state.context_by_video[video_id].append(context_item)
st.session_state.context_by_section = {}
for context_item in relevant_contexts_Latex:
section_id = context_item['section']
if section_id not in st.session_state.context_by_section:
st.session_state.context_by_section[section_id] = []
st.session_state.context_by_section[section_id].append(context_item)
context = ''
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
for context_item in contexts:
start_time = int(context_item['start'])
context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n'
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
context += f'Section {i} ({section_id}):\n'
for context_item in contexts:
context += context_item['text'] + '\n\n'
if use_expert_answer:
if st.session_state.expert_model == "LLaMA-TOMMI-1.0":
if 'tommi_model' not in st.session_state:
tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path)
st.session_state.tommi_model = tommi_model
st.session_state.tommi_tokenizer = tommi_tokenizer
messages = [
{"role": "system", "content": "You are an expert in Finite Element Methods."},
{"role": "user", "content": st.session_state.question}
]
expert_answer = generate_response(
model=st.session_state.tommi_model,
tokenizer=st.session_state.tommi_tokenizer,
messages=messages,
do_sample=tommi_do_sample,
temperature=tommi_temperature if tommi_do_sample else None,
top_k=tommi_top_k if tommi_do_sample else None,
top_p=tommi_top_p if tommi_do_sample else None,
num_beams=tommi_num_beams if not tommi_do_sample else 1,
max_new_tokens=tommi_max_new_tokens
)
elif st.session_state.expert_model in ["gpt-4o-mini", "gpt-3.5-turbo"]:
expert_answer = openai_domain_specific_answer_generation(
get_expert_system_prompt(),
st.session_state.question,
model=model,
temperature=expert_temperature,
top_p=expert_top_p
)
st.session_state.expert_answer = fix_latex(expert_answer)
else:
st.session_state.expert_answer = 'No Expert Answer. Only use the context.'
answer = openai_context_integration(
get_synthesis_system_prompt("Finite Element Method"),
st.session_state.question,
st.session_state.expert_answer,
context,
model=model,
temperature=integration_temperature,
top_p=integration_top_p
)
answer = fix_latex(answer)
if answer.split()[0] == "NOT_ENOUGH_INFO":
st.markdown("")
st.markdown("#### Query:")
st.markdown(fix_latex(st.session_state.question))
if show_expert_responce:
st.markdown("#### Initial Expert Answer:")
st.markdown(st.session_state.expert_answer)
st.markdown("#### Answer:")
st.write(":smiling_face_with_tear:")
st.markdown(answer.split('NOT_ENOUGH_INFO')[1])
st.divider()
st.caption(get_disclaimer())
# st.caption("The AI Teaching Assistant project")
st.session_state.question_answered = False
st.stop()
else:
st.session_state.answer = answer
st.session_state.question_answered = True
else:
st.markdown("")
st.write("Please enter a question. :smirk:")
st.session_state.question_answered = False
if st.session_state.question_answered:
st.markdown("")
st.markdown("#### Query:")
st.markdown(fix_latex(st.session_state.question))
if show_expert_responce:
st.markdown("#### Initial Expert Answer:")
st.markdown(st.session_state.expert_answer)
st.markdown("#### Answer:")
st.markdown(st.session_state.answer)
if top_k_YT > 0:
st.markdown("#### Retrieved content in lecture videos")
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
# with st.expander(f"**Video {i}** | {contexts[0]['title']}", expanded=True):
with st.container(border=True):
st.markdown(f"**Video {i} | {contexts[0]['title']}**")
video_placeholder = st.empty()
video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True)
st.markdown('')
with st.container(border=False):
st.markdown("Retrieved Times")
cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)])
for j, context_item in enumerate(contexts):
start_time = int(context_item['start'])
label = sec_to_time(start_time)
if cols[j].button(label, key=f"{video_id}_{start_time}"):
if st.session_state.playing_video_id is not None:
st.session_state.playing_video_id = None
video_placeholder.empty()
video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True)
st.session_state.playing_video_id = video_id
with st.expander("Video Summary", expanded=False):
# st.write("##### Video Overview:")
st.markdown(summary[video_id])
if show_textbook and top_k_Latex > 0:
st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis")
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
# with st.expander(f"**Section {i} | {section_id}**", expanded=True):
st.markdown(f"**Section {i} | {section_id}**")
for context_item in contexts:
st.markdown(context_item['text'])
st.divider()
st.markdown(" ")
st.divider()
st.caption(get_disclaimer())