File size: 19,413 Bytes
5c2a5a2
 
 
 
 
 
 
 
b849b51
5c2a5a2
07c040d
 
63a7c65
 
5c2a5a2
 
 
 
63a7c65
 
5c2a5a2
 
 
 
 
 
 
63a7c65
 
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b849b51
 
 
 
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c040d
63a7c65
 
5c2a5a2
 
 
63a7c65
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b849b51
 
5c2a5a2
b849b51
 
5c2a5a2
b849b51
5c2a5a2
b849b51
 
5c2a5a2
b849b51
 
 
 
 
 
 
 
 
 
 
 
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a7c65
 
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b849b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2a5a2
 
b849b51
 
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import json
import numpy as np
import streamlit as st
from sentence_transformers import SentenceTransformer
from openai import OpenAI
import random
import prompts
from utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response

st.set_page_config(page_title="AI University")

# Set the cache directory to persistent storage
os.environ["HF_HOME"] = "/data/.cache/huggingface"

# client = OpenAI(api_key=st.secrets["general"]["OpenAI_API"])
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

@st.cache_resource
def load_youtube_data(base_path, embedding_model_name, chunk_tokens, overlap_tokens):
    embedding_space_file_name = f'{base_path}/yt_embedding_space_{embedding_model_name}_tpc{chunk_tokens}_o{overlap_tokens}.json'
    with open(embedding_space_file_name, 'r') as json_file:
        loaded_data = json.load(json_file)
    
    embedding_space = np.array(loaded_data['embedding_space'])
    return loaded_data['chunks'], embedding_space

@st.cache_resource
def load_book_data(base_path, embedding_model_name, chunk_tokens, overlap_tokens):
    embedding_space_file_name = f'{base_path}/latex_embedding_space_by_sections_{embedding_model_name}_tpc{chunk_tokens}_o{overlap_tokens}.json'
    with open(embedding_space_file_name, 'r') as json_file:
        loaded_data = json.load(json_file)
    
    embedding_space = np.array(loaded_data['embedding_space'])
    return loaded_data['chunks'], embedding_space

@st.cache_resource
def load_summary(file_path):
    with open(file_path, 'r') as file:
        transcripts = json.load(file)
    return transcripts


def embed_question_openai(texts, model="text-embedding-3-small"):
    response = client.embeddings.create(
        input=texts,
        model=model
    )
    return np.array(response.data[0].embedding)

def embed_question(question, embedding_model):
    if embedding_model == "text-embedding-3-small":
        return embed_question_openai(question, embedding_model)
    else:
        return embedding_model.encode(question, convert_to_numpy=True)
    
def fixed_knn_retrieval(question_embedding, context_embeddings, top_k=5, min_k=1):
    
    # Normalize 
    question_embedding = question_embedding / np.linalg.norm(question_embedding)
    context_embeddings = context_embeddings / np.linalg.norm(context_embeddings, axis=1, keepdims=True)
    
    # Calculate cosine similarities between the question embedding and all context embeddings.
    similarities = np.dot(context_embeddings, question_embedding)
    # Sort the similarities in descending order and get the corresponding indices.
    sorted_indices = np.argsort(similarities)[::-1]
    # Select the top_k most similar contexts, ensuring at least min_k contexts are selected.
    selected_indices = sorted_indices[:max(top_k, min_k)].tolist()
    return selected_indices

def sec_to_time(start_time):
    return f"{start_time // 60:02}:{start_time % 60:02}"





st.markdown("""
    <style>
    .video-wrapper {
        position: relative;
        padding-bottom: 56.25%;
        height: 0;
    }
    .video-wrapper iframe {
        position: absolute;
        top: 0;
        left: 0;
        width: 100%;
        height: 100%;
    }
    </style>
    """, unsafe_allow_html=True)

def get_youtube_embed(video_id, start_time=0, autoplay=0):
    embed_code = f'''
    <div class="video-wrapper">
        <iframe src="https://www.youtube.com/embed/{video_id}?start={start_time}&autoplay={autoplay}&rel=0" 
        frameborder="0" allowfullscreen></iframe>
    </div>
    '''
    return embed_code


disclaimer_contact =""":gray[AI Teaching Assistant is developed at the University of Southern California by Mostafa Faghih Shojaei, Rahul Gulati, Benjamin Jasperson, Shangshang Wang, Simone Cimolato, Dangli Cao, Willie Neiswanger, and Krishna Garikipati.]

:gray[**Main Data Sources:**] [Introduction to Finite Element Methods (FEM) by Prof. Krishna Garikipati](https://www.youtube.com/playlist?list=PLJhG_d-Sp_JHKVRhfTgDqbic_4MHpltXZ) :gray[and] [The Finite Element Method: Linear Static and Dynamic Finite Element Analysis by Thomas J. R. Hughes](https://www.google.com/books/edition/_/cHH2n_qBK0IC?hl=en).

:gray[**Disclaimer and Copyright Notice:**] :gray[1. AI-Generated Responses: Answers are generated using AI and, while thorough, may not always be 100% accurate. Please verify the information independently. 2. Content Ownership: All video content and lecture material referenced belong to their original creators. We encourage users to view the original material on verified platforms to ensure authenticity and accuracy. 3. Educational Fair Use: This tool is intended solely for educational purposes and operates under the principles of fair use. It is not authorized for commercial applications.]

:gray[For any questions, concerns, or feedback about this application, please contact the development team directly.]
"""

# ---------------------------------------
base_path = "data/"


st.title(":red[AI University]")
st.markdown("### Finite Element Methods")
# st.markdown("### Based on Introduction to Finite Element Methods (FEM) by Prof. Krishna Garikipati")
# st.markdown("##### [YouTube playlist of the FEM lectures](https://www.youtube.com/playlist?list=PLJhG_d-Sp_JHKVRhfTgDqbic_4MHpltXZ)")

st.markdown(":gray[Welcome to] :red[AI University]:gray[, developed at the] :red[University of Southern California]:gray[. This app leverages AI to provide expert answers to queries related to] :red[Finite Element Methods (FEM)]:gray[.]")

# As the content is AI-generated, we strongly recommend independently verifying the information provided. 

st.markdown(" ")
st.markdown(" ")
# st.divider()
# Sidebar for settings
with st.sidebar:
    st.header("Settings")
    # with st.container(border=True):
    # Embedding model

    model_name = st.selectbox("Choose content embedding model", [
        "text-embedding-3-small",
        # "text-embedding-3-large",
        # "all-MiniLM-L6-v2", 
        # "all-mpnet-base-v2"
    ], 
    # help="""
    # Select the embedding model to use for encoding the retrieved text data. 
    # Options include OpenAI's `text-embedding-3` models and two widely
    # used SentenceTransformers models.
    # """
    )
    
    with st.container(border=True):
        st.write('**Video lectures**')
        yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
        yt_chunk_tokens = yt_token_choice
        yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens]
        top_k_YT = st.slider("Number of relevant content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num")
        yt_overlap_tokens = yt_chunk_tokens // 4

    # st.divider()
    with st.container(border=True):
        st.write('**Textbook**')
        show_textbook = False
        # show_textbook = st.toggle("Show Textbook Content", value=False)
        latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
        latex_chunk_tokens = latex_token_choice
        latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens]
        top_k_Latex = st.slider("Number of relevant content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num")
        # latex_overlap_tokens = latex_chunk_tokens // 4
        latex_overlap_tokens = 0

    st.write(' ')      
    with st.expander('Expert model', expanded=False):

            use_expert_answer = st.toggle("Use expert answer", value=True)
            show_expert_responce = st.toggle("Show initial expert answer", value=False)

            model = st.selectbox("Choose the LLM model", ["gpt-4o-mini", "gpt-3.5-turbo", "llama-tommi-0.35"], key='a1model')

            if model == "llama-tommi-0.35":
                tommi_do_sample = st.toggle("Enable Sampling", value=True, key='tommi_sample')

                if tommi_do_sample:
                    tommi_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='tommi_temp')
                    tommi_top_k = st.slider("Top K", 0, 100, 50, key='tommi_top_k')
                    tommi_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='tommi_top_p')
                else:
                    tommi_num_beams = st.slider("Num Beams", 1, 10, 4, key='tommi_num_beams')

                tommi_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='tommi_max_new_tokens')
            else:
                expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t')
                expert_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p')
                expert_top_k = st.slider("Top K", 0, 100, 50, key='a1k')

    with st.expander('Synthesis model',expanded=False):

        # with st.container(border=True):
        # Choose the LLM model
        model = st.selectbox("Choose the LLM model", ["gpt-4o-mini", "gpt-3.5-turbo"], key='a2model')

        # Temperature
        integration_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t')

        integration_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p')

        
# Main content area
if "question" not in st.session_state:
    st.session_state.question = ""

def get_random_question():
    with open(base_path + "/questions.txt", "r") as file:
        questions = [line.strip() for line in file]
    return random.choice(questions)

text_area_placeholder = st.empty()
question_help = "Including details or instructions improves the answer."
st.session_state.question = text_area_placeholder.text_area(
    "**Enter your question/query about Finite Element Method**",
    height=120,
    value=st.session_state.question,
    help=question_help
)

_, col1, col2, _ = st.columns([4, 2, 4, 3]) 
with col1:
    submit_button_placeholder = st.empty()

with col2:
    if st.button("Random Question"):
        while True:
            random_question = get_random_question()
            if random_question != st.session_state.question:
                break
        st.session_state.question = random_question
        text_area_placeholder.text_area(
            "**Enter your question:**",
            height=120,
            value=st.session_state.question,
            help=question_help
        )

# Load YouTube and LaTeX data
text_data_YT, context_embeddings_YT = load_youtube_data(base_path, model_name, yt_chunk_tokens, yt_overlap_tokens)
text_data_Latex, context_embeddings_Latex = load_book_data(base_path, model_name, latex_chunk_tokens, latex_overlap_tokens)

summary = load_summary('data/KG_FEM_summary.json')

if 'question_answered' not in st.session_state:
    st.session_state.question_answered = False
if 'context_by_video' not in st.session_state:
    st.session_state.context_by_video = {}
if 'context_by_section' not in st.session_state:
    st.session_state.context_by_section = {}
if 'answer' not in st.session_state:
    st.session_state.answer = ""
if 'playing_video_id' not in st.session_state:
    st.session_state.playing_video_id = None

if submit_button_placeholder.button("AI Answer", type="primary"): 
    if st.session_state.question != "":
        with st.spinner("Finding relevant contexts..."):
            question_embedding = embed_question(st.session_state.question, model_name)
            initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
            idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
            idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)

        with st.spinner("Answering the question..."):
            relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
            relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])

            st.session_state.context_by_video = {}
            for context_item in relevant_contexts_YT:
                video_id = context_item['video_id']
                if video_id not in st.session_state.context_by_video:
                    st.session_state.context_by_video[video_id] = []
                st.session_state.context_by_video[video_id].append(context_item)

            st.session_state.context_by_section = {}
            for context_item in relevant_contexts_Latex:
                section_id = context_item['section']
                if section_id not in st.session_state.context_by_section:
                    st.session_state.context_by_section[section_id] = []
                st.session_state.context_by_section[section_id].append(context_item)

            context = ''
            for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
                for context_item in contexts:
                    start_time = int(context_item['start'])
                    context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n'

            for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
                context += f'Section {i} ({section_id}):\n'
                for context_item in contexts:
                    context += context_item['text'] + '\n\n'
            
            if use_expert_answer:
                if model == "llama-tommi-0.35":
                    if 'tommi_model' not in st.session_state:
                        tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path)
                        st.session_state.tommi_model = tommi_model
                        st.session_state.tommi_tokenizer = tommi_tokenizer

                    messages = [
                        {"role": "system", "content": "You are an expert in Finite Element Methods."},
                        {"role": "user", "content": st.session_state.question}
                    ]

                    st.session_state.expert_answer = generate_response(
                        model=st.session_state.tommi_model,
                        tokenizer=st.session_state.tommi_tokenizer,
                        messages=messages,
                        do_sample=tommi_do_sample,
                        temperature=tommi_temperature if tommi_do_sample else None,
                        top_k=tommi_top_k if tommi_do_sample else None,
                        top_p=tommi_top_p if tommi_do_sample else None,
                        num_beams=tommi_num_beams if not tommi_do_sample else 1,
                        max_new_tokens=tommi_max_new_tokens
                    )
                else:
                    st.session_state.expert_answer = prompts.openai_domain_specific_answer_generation(
                        "Finite Element Method",
                        st.session_state.question,
                        model=model,
                        temperature=expert_temperature,
                        top_p=expert_top_p,
                        top_k=expert_top_k
                    )
            else:
                st.session_state.expert_answer = 'No Expert Answer. Only use the context.'


            answer = prompts.openai_context_integration("Finite Element Method", st.session_state.question, st.session_state.expert_answer, context, model=model, temperature=integration_temperature, top_p=integration_top_p)

        if answer.split()[0] == "NOT_ENOUGH_INFO":
            st.markdown("")
            st.markdown("#### Query:")
            st.markdown(prompts.fix_latex(st.session_state.question))
            if show_expert_responce:
                st.markdown("#### Initial Expert Answer:")
                st.markdown(st.session_state.expert_answer)
            st.markdown("#### Answer:")
            st.write(":smiling_face_with_tear:")
            st.markdown(answer.split('NOT_ENOUGH_INFO')[1])
            st.divider()
            st.caption(disclaimer_contact)
            # st.caption("The AI Teaching Assistant project")
            st.session_state.question_answered = False
            st.stop()   
        else:
            st.session_state.answer = answer

        st.session_state.question_answered = True

    else:
        st.markdown("")
        st.write("Please enter a question. :smirk:")
        st.session_state.question_answered = False

if st.session_state.question_answered:
    st.markdown("")
    st.markdown("#### Query:")
    st.markdown(prompts.fix_latex(st.session_state.question))
    if show_expert_responce:
        st.markdown("#### Initial Expert Answer:")
        st.markdown(st.session_state.expert_answer)
    st.markdown("#### Answer:")
    st.markdown(st.session_state.answer)
    
    if top_k_YT > 0:
        st.markdown("#### Retrieved content in lecture videos")
        for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
            # with st.expander(f"**Video {i}** | {contexts[0]['title']}", expanded=True):
            with st.container(border=True):
                st.markdown(f"**Video {i} | {contexts[0]['title']}**")
                video_placeholder = st.empty()
                video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True)
                st.markdown('')
                with st.container(border=False):
                    st.markdown("Retrieved Times")
                    cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)])
                    for j, context_item in enumerate(contexts):
                        start_time = int(context_item['start'])
                        label = sec_to_time(start_time)
                        if cols[j].button(label, key=f"{video_id}_{start_time}"):
                            if st.session_state.playing_video_id is not None:
                                st.session_state.playing_video_id = None
                                video_placeholder.empty()
                            video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True)
                            st.session_state.playing_video_id = video_id
                
                with st.expander("Video Summary", expanded=False):
                    # st.write("##### Video Overview:")
                    st.markdown(summary[video_id])

    if show_textbook and top_k_Latex > 0:
        st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis")
        for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
            # with st.expander(f"**Section {i} | {section_id}**", expanded=True):
            st.markdown(f"**Section {i} | {section_id}**")
            for context_item in contexts:
                st.markdown(context_item['text'])
                st.divider()

st.markdown(" ")
st.divider()
st.caption(disclaimer_contact)