Spaces:
Running
on
L4
Running
on
L4
File size: 19,413 Bytes
5c2a5a2 b849b51 5c2a5a2 07c040d 63a7c65 5c2a5a2 63a7c65 5c2a5a2 63a7c65 5c2a5a2 b849b51 5c2a5a2 07c040d 63a7c65 5c2a5a2 63a7c65 5c2a5a2 b849b51 5c2a5a2 b849b51 5c2a5a2 b849b51 5c2a5a2 b849b51 5c2a5a2 b849b51 5c2a5a2 63a7c65 5c2a5a2 b849b51 5c2a5a2 b849b51 5c2a5a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import os
import json
import numpy as np
import streamlit as st
from sentence_transformers import SentenceTransformer
from openai import OpenAI
import random
import prompts
from utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response
st.set_page_config(page_title="AI University")
# Set the cache directory to persistent storage
os.environ["HF_HOME"] = "/data/.cache/huggingface"
# client = OpenAI(api_key=st.secrets["general"]["OpenAI_API"])
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
@st.cache_resource
def load_youtube_data(base_path, embedding_model_name, chunk_tokens, overlap_tokens):
embedding_space_file_name = f'{base_path}/yt_embedding_space_{embedding_model_name}_tpc{chunk_tokens}_o{overlap_tokens}.json'
with open(embedding_space_file_name, 'r') as json_file:
loaded_data = json.load(json_file)
embedding_space = np.array(loaded_data['embedding_space'])
return loaded_data['chunks'], embedding_space
@st.cache_resource
def load_book_data(base_path, embedding_model_name, chunk_tokens, overlap_tokens):
embedding_space_file_name = f'{base_path}/latex_embedding_space_by_sections_{embedding_model_name}_tpc{chunk_tokens}_o{overlap_tokens}.json'
with open(embedding_space_file_name, 'r') as json_file:
loaded_data = json.load(json_file)
embedding_space = np.array(loaded_data['embedding_space'])
return loaded_data['chunks'], embedding_space
@st.cache_resource
def load_summary(file_path):
with open(file_path, 'r') as file:
transcripts = json.load(file)
return transcripts
def embed_question_openai(texts, model="text-embedding-3-small"):
response = client.embeddings.create(
input=texts,
model=model
)
return np.array(response.data[0].embedding)
def embed_question(question, embedding_model):
if embedding_model == "text-embedding-3-small":
return embed_question_openai(question, embedding_model)
else:
return embedding_model.encode(question, convert_to_numpy=True)
def fixed_knn_retrieval(question_embedding, context_embeddings, top_k=5, min_k=1):
# Normalize
question_embedding = question_embedding / np.linalg.norm(question_embedding)
context_embeddings = context_embeddings / np.linalg.norm(context_embeddings, axis=1, keepdims=True)
# Calculate cosine similarities between the question embedding and all context embeddings.
similarities = np.dot(context_embeddings, question_embedding)
# Sort the similarities in descending order and get the corresponding indices.
sorted_indices = np.argsort(similarities)[::-1]
# Select the top_k most similar contexts, ensuring at least min_k contexts are selected.
selected_indices = sorted_indices[:max(top_k, min_k)].tolist()
return selected_indices
def sec_to_time(start_time):
return f"{start_time // 60:02}:{start_time % 60:02}"
st.markdown("""
<style>
.video-wrapper {
position: relative;
padding-bottom: 56.25%;
height: 0;
}
.video-wrapper iframe {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""", unsafe_allow_html=True)
def get_youtube_embed(video_id, start_time=0, autoplay=0):
embed_code = f'''
<div class="video-wrapper">
<iframe src="https://www.youtube.com/embed/{video_id}?start={start_time}&autoplay={autoplay}&rel=0"
frameborder="0" allowfullscreen></iframe>
</div>
'''
return embed_code
disclaimer_contact =""":gray[AI Teaching Assistant is developed at the University of Southern California by Mostafa Faghih Shojaei, Rahul Gulati, Benjamin Jasperson, Shangshang Wang, Simone Cimolato, Dangli Cao, Willie Neiswanger, and Krishna Garikipati.]
:gray[**Main Data Sources:**] [Introduction to Finite Element Methods (FEM) by Prof. Krishna Garikipati](https://www.youtube.com/playlist?list=PLJhG_d-Sp_JHKVRhfTgDqbic_4MHpltXZ) :gray[and] [The Finite Element Method: Linear Static and Dynamic Finite Element Analysis by Thomas J. R. Hughes](https://www.google.com/books/edition/_/cHH2n_qBK0IC?hl=en).
:gray[**Disclaimer and Copyright Notice:**] :gray[1. AI-Generated Responses: Answers are generated using AI and, while thorough, may not always be 100% accurate. Please verify the information independently. 2. Content Ownership: All video content and lecture material referenced belong to their original creators. We encourage users to view the original material on verified platforms to ensure authenticity and accuracy. 3. Educational Fair Use: This tool is intended solely for educational purposes and operates under the principles of fair use. It is not authorized for commercial applications.]
:gray[For any questions, concerns, or feedback about this application, please contact the development team directly.]
"""
# ---------------------------------------
base_path = "data/"
st.title(":red[AI University]")
st.markdown("### Finite Element Methods")
# st.markdown("### Based on Introduction to Finite Element Methods (FEM) by Prof. Krishna Garikipati")
# st.markdown("##### [YouTube playlist of the FEM lectures](https://www.youtube.com/playlist?list=PLJhG_d-Sp_JHKVRhfTgDqbic_4MHpltXZ)")
st.markdown(":gray[Welcome to] :red[AI University]:gray[, developed at the] :red[University of Southern California]:gray[. This app leverages AI to provide expert answers to queries related to] :red[Finite Element Methods (FEM)]:gray[.]")
# As the content is AI-generated, we strongly recommend independently verifying the information provided.
st.markdown(" ")
st.markdown(" ")
# st.divider()
# Sidebar for settings
with st.sidebar:
st.header("Settings")
# with st.container(border=True):
# Embedding model
model_name = st.selectbox("Choose content embedding model", [
"text-embedding-3-small",
# "text-embedding-3-large",
# "all-MiniLM-L6-v2",
# "all-mpnet-base-v2"
],
# help="""
# Select the embedding model to use for encoding the retrieved text data.
# Options include OpenAI's `text-embedding-3` models and two widely
# used SentenceTransformers models.
# """
)
with st.container(border=True):
st.write('**Video lectures**')
yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
yt_chunk_tokens = yt_token_choice
yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens]
top_k_YT = st.slider("Number of relevant content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num")
yt_overlap_tokens = yt_chunk_tokens // 4
# st.divider()
with st.container(border=True):
st.write('**Textbook**')
show_textbook = False
# show_textbook = st.toggle("Show Textbook Content", value=False)
latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
latex_chunk_tokens = latex_token_choice
latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens]
top_k_Latex = st.slider("Number of relevant content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num")
# latex_overlap_tokens = latex_chunk_tokens // 4
latex_overlap_tokens = 0
st.write(' ')
with st.expander('Expert model', expanded=False):
use_expert_answer = st.toggle("Use expert answer", value=True)
show_expert_responce = st.toggle("Show initial expert answer", value=False)
model = st.selectbox("Choose the LLM model", ["gpt-4o-mini", "gpt-3.5-turbo", "llama-tommi-0.35"], key='a1model')
if model == "llama-tommi-0.35":
tommi_do_sample = st.toggle("Enable Sampling", value=True, key='tommi_sample')
if tommi_do_sample:
tommi_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='tommi_temp')
tommi_top_k = st.slider("Top K", 0, 100, 50, key='tommi_top_k')
tommi_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='tommi_top_p')
else:
tommi_num_beams = st.slider("Num Beams", 1, 10, 4, key='tommi_num_beams')
tommi_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='tommi_max_new_tokens')
else:
expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t')
expert_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p')
expert_top_k = st.slider("Top K", 0, 100, 50, key='a1k')
with st.expander('Synthesis model',expanded=False):
# with st.container(border=True):
# Choose the LLM model
model = st.selectbox("Choose the LLM model", ["gpt-4o-mini", "gpt-3.5-turbo"], key='a2model')
# Temperature
integration_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t')
integration_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p')
# Main content area
if "question" not in st.session_state:
st.session_state.question = ""
def get_random_question():
with open(base_path + "/questions.txt", "r") as file:
questions = [line.strip() for line in file]
return random.choice(questions)
text_area_placeholder = st.empty()
question_help = "Including details or instructions improves the answer."
st.session_state.question = text_area_placeholder.text_area(
"**Enter your question/query about Finite Element Method**",
height=120,
value=st.session_state.question,
help=question_help
)
_, col1, col2, _ = st.columns([4, 2, 4, 3])
with col1:
submit_button_placeholder = st.empty()
with col2:
if st.button("Random Question"):
while True:
random_question = get_random_question()
if random_question != st.session_state.question:
break
st.session_state.question = random_question
text_area_placeholder.text_area(
"**Enter your question:**",
height=120,
value=st.session_state.question,
help=question_help
)
# Load YouTube and LaTeX data
text_data_YT, context_embeddings_YT = load_youtube_data(base_path, model_name, yt_chunk_tokens, yt_overlap_tokens)
text_data_Latex, context_embeddings_Latex = load_book_data(base_path, model_name, latex_chunk_tokens, latex_overlap_tokens)
summary = load_summary('data/KG_FEM_summary.json')
if 'question_answered' not in st.session_state:
st.session_state.question_answered = False
if 'context_by_video' not in st.session_state:
st.session_state.context_by_video = {}
if 'context_by_section' not in st.session_state:
st.session_state.context_by_section = {}
if 'answer' not in st.session_state:
st.session_state.answer = ""
if 'playing_video_id' not in st.session_state:
st.session_state.playing_video_id = None
if submit_button_placeholder.button("AI Answer", type="primary"):
if st.session_state.question != "":
with st.spinner("Finding relevant contexts..."):
question_embedding = embed_question(st.session_state.question, model_name)
initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)
with st.spinner("Answering the question..."):
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])
st.session_state.context_by_video = {}
for context_item in relevant_contexts_YT:
video_id = context_item['video_id']
if video_id not in st.session_state.context_by_video:
st.session_state.context_by_video[video_id] = []
st.session_state.context_by_video[video_id].append(context_item)
st.session_state.context_by_section = {}
for context_item in relevant_contexts_Latex:
section_id = context_item['section']
if section_id not in st.session_state.context_by_section:
st.session_state.context_by_section[section_id] = []
st.session_state.context_by_section[section_id].append(context_item)
context = ''
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
for context_item in contexts:
start_time = int(context_item['start'])
context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n'
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
context += f'Section {i} ({section_id}):\n'
for context_item in contexts:
context += context_item['text'] + '\n\n'
if use_expert_answer:
if model == "llama-tommi-0.35":
if 'tommi_model' not in st.session_state:
tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path)
st.session_state.tommi_model = tommi_model
st.session_state.tommi_tokenizer = tommi_tokenizer
messages = [
{"role": "system", "content": "You are an expert in Finite Element Methods."},
{"role": "user", "content": st.session_state.question}
]
st.session_state.expert_answer = generate_response(
model=st.session_state.tommi_model,
tokenizer=st.session_state.tommi_tokenizer,
messages=messages,
do_sample=tommi_do_sample,
temperature=tommi_temperature if tommi_do_sample else None,
top_k=tommi_top_k if tommi_do_sample else None,
top_p=tommi_top_p if tommi_do_sample else None,
num_beams=tommi_num_beams if not tommi_do_sample else 1,
max_new_tokens=tommi_max_new_tokens
)
else:
st.session_state.expert_answer = prompts.openai_domain_specific_answer_generation(
"Finite Element Method",
st.session_state.question,
model=model,
temperature=expert_temperature,
top_p=expert_top_p,
top_k=expert_top_k
)
else:
st.session_state.expert_answer = 'No Expert Answer. Only use the context.'
answer = prompts.openai_context_integration("Finite Element Method", st.session_state.question, st.session_state.expert_answer, context, model=model, temperature=integration_temperature, top_p=integration_top_p)
if answer.split()[0] == "NOT_ENOUGH_INFO":
st.markdown("")
st.markdown("#### Query:")
st.markdown(prompts.fix_latex(st.session_state.question))
if show_expert_responce:
st.markdown("#### Initial Expert Answer:")
st.markdown(st.session_state.expert_answer)
st.markdown("#### Answer:")
st.write(":smiling_face_with_tear:")
st.markdown(answer.split('NOT_ENOUGH_INFO')[1])
st.divider()
st.caption(disclaimer_contact)
# st.caption("The AI Teaching Assistant project")
st.session_state.question_answered = False
st.stop()
else:
st.session_state.answer = answer
st.session_state.question_answered = True
else:
st.markdown("")
st.write("Please enter a question. :smirk:")
st.session_state.question_answered = False
if st.session_state.question_answered:
st.markdown("")
st.markdown("#### Query:")
st.markdown(prompts.fix_latex(st.session_state.question))
if show_expert_responce:
st.markdown("#### Initial Expert Answer:")
st.markdown(st.session_state.expert_answer)
st.markdown("#### Answer:")
st.markdown(st.session_state.answer)
if top_k_YT > 0:
st.markdown("#### Retrieved content in lecture videos")
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
# with st.expander(f"**Video {i}** | {contexts[0]['title']}", expanded=True):
with st.container(border=True):
st.markdown(f"**Video {i} | {contexts[0]['title']}**")
video_placeholder = st.empty()
video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True)
st.markdown('')
with st.container(border=False):
st.markdown("Retrieved Times")
cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)])
for j, context_item in enumerate(contexts):
start_time = int(context_item['start'])
label = sec_to_time(start_time)
if cols[j].button(label, key=f"{video_id}_{start_time}"):
if st.session_state.playing_video_id is not None:
st.session_state.playing_video_id = None
video_placeholder.empty()
video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True)
st.session_state.playing_video_id = video_id
with st.expander("Video Summary", expanded=False):
# st.write("##### Video Overview:")
st.markdown(summary[video_id])
if show_textbook and top_k_Latex > 0:
st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis")
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
# with st.expander(f"**Section {i} | {section_id}**", expanded=True):
st.markdown(f"**Section {i} | {section_id}**")
for context_item in contexts:
st.markdown(context_item['text'])
st.divider()
st.markdown(" ")
st.divider()
st.caption(disclaimer_contact) |