Update main.py
Browse files
main.py
CHANGED
@@ -10,18 +10,14 @@ import time
|
|
10 |
from collections import defaultdict
|
11 |
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
|
12 |
|
13 |
-
from datetime import datetime # Required for timestamping
|
14 |
-
|
15 |
from aiohttp import ClientSession, ClientResponseError
|
16 |
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
17 |
-
from fastapi.responses import JSONResponse
|
18 |
from pydantic import BaseModel
|
19 |
|
20 |
-
# ----------------------------- Configuration -----------------------------
|
21 |
-
|
22 |
# Configure logging
|
23 |
logging.basicConfig(
|
24 |
-
level=logging.
|
25 |
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
|
26 |
handlers=[logging.StreamHandler()]
|
27 |
)
|
@@ -42,50 +38,19 @@ rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
|
|
42 |
CLEANUP_INTERVAL = 60 # seconds
|
43 |
RATE_LIMIT_WINDOW = 60 # seconds
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
class ImageResponseModel(BaseModel):
|
48 |
-
images: str
|
49 |
alt: str
|
50 |
|
51 |
-
class
|
52 |
-
role: str
|
53 |
-
content: str
|
54 |
-
|
55 |
-
class ChatRequest(BaseModel):
|
56 |
-
model: str
|
57 |
-
messages: List[Message]
|
58 |
-
temperature: Optional[float] = 1.0
|
59 |
-
top_p: Optional[float] = 1.0
|
60 |
-
n: Optional[int] = 1
|
61 |
-
max_tokens: Optional[int] = None
|
62 |
-
presence_penalty: Optional[float] = 0.0
|
63 |
-
frequency_penalty: Optional[float] = 0.0
|
64 |
-
logit_bias: Optional[Dict[str, float]] = None
|
65 |
-
user: Optional[str] = None
|
66 |
-
stream: Optional[bool] = False
|
67 |
-
webSearchMode: Optional[bool] = False # Added based on old code
|
68 |
-
|
69 |
-
# ----------------------------- Helper Functions -----------------------------
|
70 |
-
|
71 |
-
def create_response(content: str, model: str) -> Dict[str, Any]:
|
72 |
-
"""
|
73 |
-
Formats the response chunk.
|
74 |
-
"""
|
75 |
-
return {
|
76 |
-
"model": model,
|
77 |
-
"content": content
|
78 |
-
}
|
79 |
-
|
80 |
-
# ----------------------------- Blackbox Class -----------------------------
|
81 |
-
|
82 |
class Blackbox:
|
83 |
label = "Blackbox AI"
|
84 |
url = "https://www.blackbox.ai"
|
85 |
api_endpoint = "https://www.blackbox.ai/api/chat"
|
86 |
working = True
|
87 |
supports_gpt_4 = True
|
88 |
-
supports_stream = True
|
89 |
supports_system_message = True
|
90 |
supports_message_history = True
|
91 |
|
@@ -94,7 +59,7 @@ class Blackbox:
|
|
94 |
models = [
|
95 |
default_model,
|
96 |
'blackboxai-pro',
|
97 |
-
*image_models,
|
98 |
"llama-3.1-8b",
|
99 |
'llama-3.1-70b',
|
100 |
'llama-3.1-405b',
|
@@ -234,15 +199,8 @@ class Blackbox:
|
|
234 |
model: str,
|
235 |
messages: List[Dict[str, str]],
|
236 |
proxy: Optional[str] = None,
|
237 |
-
websearch: bool = False,
|
238 |
**kwargs
|
239 |
-
) ->
|
240 |
-
"""
|
241 |
-
Generates a response by interacting with the Blackbox API.
|
242 |
-
Performs two POST requests:
|
243 |
-
1. Initiates the chat and obtains a chat_id.
|
244 |
-
2. Retrieves the chat response using the chat_id.
|
245 |
-
"""
|
246 |
model = cls.get_model(model)
|
247 |
chat_id = cls.generate_random_string()
|
248 |
next_action = cls.generate_next_action()
|
@@ -316,25 +274,12 @@ class Blackbox:
|
|
316 |
"clickedForceWebSearch": False,
|
317 |
"visitFromDelta": False,
|
318 |
"mobileClient": False,
|
319 |
-
"webSearchMode":
|
320 |
"userSelectedModel": cls.userSelectedModel.get(model, model)
|
321 |
}
|
322 |
|
323 |
-
headers_chat = {
|
324 |
-
'Accept': 'text/x-component',
|
325 |
-
'Content-Type': 'text/plain;charset=UTF-8',
|
326 |
-
'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
|
327 |
-
'next-action': next_action,
|
328 |
-
'next-router-state-tree': next_router_state_tree,
|
329 |
-
'next-url': '/'
|
330 |
-
}
|
331 |
-
headers_chat_combined = {**common_headers, **headers_chat}
|
332 |
-
|
333 |
-
data_chat = '[]'
|
334 |
-
|
335 |
async with ClientSession(headers=common_headers) as session:
|
336 |
try:
|
337 |
-
# First POST request to initiate the chat and get chat_id
|
338 |
async with session.post(
|
339 |
cls.api_endpoint,
|
340 |
headers=headers_api_chat_combined,
|
@@ -343,108 +288,29 @@ class Blackbox:
|
|
343 |
) as response_api_chat:
|
344 |
response_api_chat.raise_for_status()
|
345 |
text = await response_api_chat.text()
|
346 |
-
logger.debug(f"Raw response from Blackbox API (initiate chat): {text}") # Added logging
|
347 |
cleaned_response = cls.clean_response(text)
|
348 |
-
|
349 |
-
|
350 |
-
# Second POST request to retrieve the chat response using chat_id
|
351 |
-
chat_url = f'{cls.url}/chat/{chat_id}?model={model}'
|
352 |
-
async with session.post(
|
353 |
-
chat_url,
|
354 |
-
headers=headers_chat_combined,
|
355 |
-
data=data_chat,
|
356 |
-
proxy=proxy
|
357 |
-
) as response_chat:
|
358 |
-
response_chat.raise_for_status()
|
359 |
-
chat_response_text = await response_chat.text()
|
360 |
-
logger.debug(f"Raw response from Blackbox API (retrieve chat): {chat_response_text}") # Added logging
|
361 |
-
cleaned_chat_response = cls.clean_response(chat_response_text)
|
362 |
-
logger.debug(f"Cleaned response (retrieve chat): {cleaned_chat_response}") # Added logging
|
363 |
-
|
364 |
-
if model in cls.image_models:
|
365 |
-
match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_chat_response)
|
366 |
-
if match:
|
367 |
-
image_url = match.group(1)
|
368 |
-
image_response = ImageResponseModel(images=image_url, alt="Generated Image")
|
369 |
-
logger.debug(f"Image URL extracted: {image_url}") # Added logging
|
370 |
-
return image_response
|
371 |
-
else:
|
372 |
-
logger.debug("No image URL found in the response.") # Added logging
|
373 |
-
return cleaned_chat_response
|
374 |
-
else:
|
375 |
-
if websearch:
|
376 |
-
match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_chat_response, re.DOTALL)
|
377 |
-
if match:
|
378 |
-
source_part = match.group(1).strip()
|
379 |
-
answer_part = cleaned_chat_response[match.end():].strip()
|
380 |
-
try:
|
381 |
-
sources = json.loads(source_part)
|
382 |
-
source_formatted = "**Source:**\n"
|
383 |
-
for item in sources:
|
384 |
-
title = item.get('title', 'No Title')
|
385 |
-
link = item.get('link', '#')
|
386 |
-
position = item.get('position', '')
|
387 |
-
source_formatted += f"{position}. [{title}]({link})\n"
|
388 |
-
final_response = f"{answer_part}\n\n{source_formatted}"
|
389 |
-
except json.JSONDecodeError:
|
390 |
-
final_response = f"{answer_part}\n\nSource information is unavailable."
|
391 |
-
else:
|
392 |
-
final_response = cleaned_chat_response
|
393 |
-
else:
|
394 |
-
if '$~~~$' in cleaned_chat_response:
|
395 |
-
final_response = cleaned_chat_response.split('$~~~$')[0].strip()
|
396 |
-
else:
|
397 |
-
final_response = cleaned_chat_response
|
398 |
-
|
399 |
-
logger.debug(f"Final response to return: {final_response}") # Added logging
|
400 |
-
return final_response
|
401 |
except ClientResponseError as e:
|
402 |
error_text = f"Error {e.status}: {e.message}"
|
403 |
try:
|
404 |
error_response = await e.response.text()
|
405 |
cleaned_error = cls.clean_response(error_response)
|
406 |
error_text += f" - {cleaned_error}"
|
407 |
-
logger.error(f"ClientResponseError: {error_text}") # Added logging
|
408 |
except Exception:
|
409 |
pass
|
410 |
return error_text
|
411 |
except Exception as e:
|
412 |
-
logger.exception(f"Unexpected error during /api/chat request: {str(e)}") # Added logging
|
413 |
return f"Unexpected error during /api/chat request: {str(e)}"
|
414 |
|
415 |
-
|
416 |
-
|
417 |
-
cls,
|
418 |
-
model: str,
|
419 |
-
messages: List[Dict[str, str]],
|
420 |
-
proxy: Optional[str] = None,
|
421 |
-
websearch: bool = False,
|
422 |
-
**kwargs
|
423 |
-
) -> AsyncGenerator[Union[str, ImageResponseModel], None]:
|
424 |
-
"""
|
425 |
-
Creates an asynchronous generator for streaming responses from Blackbox AI.
|
426 |
-
"""
|
427 |
-
try:
|
428 |
-
response = await cls.generate_response(
|
429 |
-
model=model,
|
430 |
-
messages=messages,
|
431 |
-
proxy=proxy,
|
432 |
-
websearch=websearch,
|
433 |
-
**kwargs
|
434 |
-
)
|
435 |
-
if isinstance(response, ImageResponseModel):
|
436 |
-
yield response
|
437 |
-
else:
|
438 |
-
yield response
|
439 |
-
except Exception as e:
|
440 |
-
logger.exception(f"Error in create_async_generator: {str(e)}")
|
441 |
-
yield f"Unexpected error: {str(e)}"
|
442 |
-
|
443 |
-
# ----------------------------- FastAPI App Setup -----------------------------
|
444 |
|
445 |
-
|
446 |
-
|
447 |
-
|
|
|
|
|
|
|
448 |
|
449 |
async def cleanup_rate_limit_stores():
|
450 |
"""
|
@@ -458,14 +324,46 @@ async def cleanup_rate_limit_stores():
|
|
458 |
logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
|
459 |
await asyncio.sleep(CLEANUP_INTERVAL)
|
460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
# Add the cleanup task when the app starts
|
462 |
@app.on_event("startup")
|
463 |
async def startup_event():
|
464 |
asyncio.create_task(cleanup_rate_limit_stores())
|
465 |
logger.info("Started rate limit store cleanup task.")
|
466 |
|
467 |
-
#
|
468 |
-
|
469 |
@app.middleware("http")
|
470 |
async def security_middleware(request: Request, call_next):
|
471 |
client_ip = request.client.host
|
@@ -488,41 +386,22 @@ async def security_middleware(request: Request, call_next):
|
|
488 |
response = await call_next(request)
|
489 |
return response
|
490 |
|
491 |
-
#
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
Dependency to extract and validate the API key from the Authorization header.
|
496 |
-
"""
|
497 |
-
client_ip = request.client.host
|
498 |
-
if authorization is None or not authorization.startswith('Bearer '):
|
499 |
-
logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
|
500 |
-
raise HTTPException(status_code=401, detail='Invalid authorization header format')
|
501 |
-
api_key = authorization[7:]
|
502 |
-
if api_key not in API_KEYS:
|
503 |
-
logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
|
504 |
-
raise HTTPException(status_code=401, detail='Invalid API key')
|
505 |
-
return api_key
|
506 |
-
|
507 |
-
# ----------------------------- Rate Limiter Dependency -----------------------------
|
508 |
-
|
509 |
-
async def rate_limiter_per_ip(request: Request):
|
510 |
-
"""
|
511 |
-
Rate limiter that enforces a limit based on the client's IP address.
|
512 |
-
"""
|
513 |
-
client_ip = request.client.host
|
514 |
-
current_time = time.time()
|
515 |
-
|
516 |
-
# Initialize or update the count and timestamp
|
517 |
-
if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
|
518 |
-
rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
|
519 |
-
else:
|
520 |
-
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
|
521 |
-
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
|
522 |
-
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
|
523 |
-
rate_limit_store[client_ip]["count"] += 1
|
524 |
|
525 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
|
527 |
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
|
528 |
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
@@ -538,132 +417,36 @@ async def chat_completions(request: ChatRequest, req: Request, api_key: str = De
|
|
538 |
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
|
539 |
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
540 |
|
541 |
-
#
|
542 |
-
|
543 |
-
|
544 |
-
if request.stream:
|
545 |
-
# Streaming response
|
546 |
-
async_generator = Blackbox.create_async_generator(
|
547 |
-
model=request.model,
|
548 |
-
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
549 |
-
websearch=request.webSearchMode
|
550 |
-
)
|
551 |
-
|
552 |
-
async def generate():
|
553 |
-
try:
|
554 |
-
async for chunk in async_generator:
|
555 |
-
if isinstance(chunk, ImageResponseModel):
|
556 |
-
image_markdown = f""
|
557 |
-
response_chunk = create_response(image_markdown, request.model)
|
558 |
-
else:
|
559 |
-
response_chunk = create_response(chunk, request.model)
|
560 |
-
|
561 |
-
yield f"data: {json.dumps(response_chunk)}\n\n"
|
562 |
-
|
563 |
-
yield "data: [DONE]\n\n"
|
564 |
-
except HTTPException as he:
|
565 |
-
error_response = {"error": he.detail}
|
566 |
-
yield f"data: {json.dumps(error_response)}\n\n"
|
567 |
-
except Exception as e:
|
568 |
-
logger.exception(f"Error during streaming response generation from IP: {client_ip}.")
|
569 |
-
error_response = {"error": str(e)}
|
570 |
-
yield f"data: {json.dumps(error_response)}\n\n"
|
571 |
-
|
572 |
-
return StreamingResponse(generate(), media_type="text/event-stream")
|
573 |
-
else:
|
574 |
-
# Non-streaming response
|
575 |
-
async_generator = Blackbox.create_async_generator(
|
576 |
-
model=request.model,
|
577 |
-
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
578 |
-
websearch=request.webSearchMode
|
579 |
-
)
|
580 |
-
|
581 |
-
response_content = ""
|
582 |
-
async for chunk in async_generator:
|
583 |
-
if isinstance(chunk, ImageResponseModel):
|
584 |
-
response_content += f"\n"
|
585 |
-
else:
|
586 |
-
response_content += chunk
|
587 |
-
|
588 |
-
logger.info(f"Completed non-streaming response generation for API key: {api_key} | IP: {client_ip}")
|
589 |
-
return {
|
590 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
591 |
-
"object": "chat.completion",
|
592 |
-
"created": int(datetime.now().timestamp()),
|
593 |
-
"model": request.model,
|
594 |
-
"choices": [
|
595 |
-
{
|
596 |
-
"message": {
|
597 |
-
"role": "assistant",
|
598 |
-
"content": response_content
|
599 |
-
},
|
600 |
-
"finish_reason": "stop",
|
601 |
-
"index": 0
|
602 |
-
}
|
603 |
-
],
|
604 |
-
"usage": {
|
605 |
-
"prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
|
606 |
-
"completion_tokens": len(response_content.split()),
|
607 |
-
"total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
|
608 |
-
},
|
609 |
-
}
|
610 |
-
except ModelNotWorkingException as e:
|
611 |
-
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
612 |
-
raise HTTPException(status_code=503, detail=str(e))
|
613 |
-
except HTTPException as he:
|
614 |
-
logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
|
615 |
-
raise he
|
616 |
-
except Exception as e:
|
617 |
-
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
|
618 |
-
raise HTTPException(status_code=500, detail=str(e))
|
619 |
-
|
620 |
-
# ----------------------------- Streaming Endpoint (Optional) -----------------------------
|
621 |
-
|
622 |
-
@app.post("/v1/chat/completions/stream", dependencies=[Depends(rate_limiter_per_ip)])
|
623 |
-
async def chat_completions_stream(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
624 |
-
"""
|
625 |
-
Optional endpoint for streaming responses. Can be removed if not needed.
|
626 |
-
"""
|
627 |
-
client_ip = req.client.host
|
628 |
-
redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]
|
629 |
-
|
630 |
-
logger.info(f"Received streaming chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")
|
631 |
-
|
632 |
-
try:
|
633 |
-
# Validate that the requested model is available
|
634 |
-
if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
|
635 |
-
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
|
636 |
-
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
637 |
-
|
638 |
-
# Check if the model is an image generation model
|
639 |
-
is_image_model = request.model in Blackbox.image_models
|
640 |
-
|
641 |
-
# Create an asynchronous generator
|
642 |
-
async_gen = Blackbox.create_async_generator(
|
643 |
model=request.model,
|
644 |
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
645 |
-
|
|
|
646 |
)
|
647 |
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
"role": "assistant",
|
659 |
-
"content":
|
660 |
-
}
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
|
|
|
|
|
|
667 |
except ModelNotWorkingException as e:
|
668 |
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
669 |
raise HTTPException(status_code=503, detail=str(e))
|
@@ -671,25 +454,24 @@ async def chat_completions_stream(request: ChatRequest, req: Request, api_key: s
|
|
671 |
logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
|
672 |
raise he
|
673 |
except Exception as e:
|
674 |
-
logger.exception(f"An unexpected error occurred while processing the
|
675 |
raise HTTPException(status_code=500, detail=str(e))
|
676 |
|
677 |
-
#
|
678 |
-
|
679 |
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|
680 |
async def get_models(req: Request):
|
681 |
client_ip = req.client.host
|
682 |
logger.info(f"Fetching available models from IP: {client_ip}")
|
683 |
return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}
|
684 |
|
|
|
685 |
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
|
686 |
async def health_check(req: Request):
|
687 |
client_ip = req.client.host
|
688 |
logger.info(f"Health check requested from IP: {client_ip}")
|
689 |
return {"status": "ok"}
|
690 |
|
691 |
-
#
|
692 |
-
|
693 |
@app.exception_handler(HTTPException)
|
694 |
async def http_exception_handler(request: Request, exc: HTTPException):
|
695 |
client_ip = request.client.host
|
@@ -706,8 +488,6 @@ async def http_exception_handler(request: Request, exc: HTTPException):
|
|
706 |
},
|
707 |
)
|
708 |
|
709 |
-
# ----------------------------- Main Entry Point -----------------------------
|
710 |
-
|
711 |
if __name__ == "__main__":
|
712 |
import uvicorn
|
713 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
10 |
from collections import defaultdict
|
11 |
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
|
12 |
|
|
|
|
|
13 |
from aiohttp import ClientSession, ClientResponseError
|
14 |
from fastapi import FastAPI, HTTPException, Request, Depends, Header
|
15 |
+
from fastapi.responses import JSONResponse
|
16 |
from pydantic import BaseModel
|
17 |
|
|
|
|
|
18 |
# Configure logging
|
19 |
logging.basicConfig(
|
20 |
+
level=logging.INFO,
|
21 |
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
|
22 |
handlers=[logging.StreamHandler()]
|
23 |
)
|
|
|
38 |
CLEANUP_INTERVAL = 60 # seconds
|
39 |
RATE_LIMIT_WINDOW = 60 # seconds
|
40 |
|
41 |
+
# Define ImageResponse for image models
|
|
|
42 |
class ImageResponseModel(BaseModel):
|
43 |
+
images: str
|
44 |
alt: str
|
45 |
|
46 |
+
# Updated Blackbox class with new models and functionalities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
class Blackbox:
|
48 |
label = "Blackbox AI"
|
49 |
url = "https://www.blackbox.ai"
|
50 |
api_endpoint = "https://www.blackbox.ai/api/chat"
|
51 |
working = True
|
52 |
supports_gpt_4 = True
|
53 |
+
supports_stream = True
|
54 |
supports_system_message = True
|
55 |
supports_message_history = True
|
56 |
|
|
|
59 |
models = [
|
60 |
default_model,
|
61 |
'blackboxai-pro',
|
62 |
+
*image_models,
|
63 |
"llama-3.1-8b",
|
64 |
'llama-3.1-70b',
|
65 |
'llama-3.1-405b',
|
|
|
199 |
model: str,
|
200 |
messages: List[Dict[str, str]],
|
201 |
proxy: Optional[str] = None,
|
|
|
202 |
**kwargs
|
203 |
+
) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
model = cls.get_model(model)
|
205 |
chat_id = cls.generate_random_string()
|
206 |
next_action = cls.generate_next_action()
|
|
|
274 |
"clickedForceWebSearch": False,
|
275 |
"visitFromDelta": False,
|
276 |
"mobileClient": False,
|
277 |
+
"webSearchMode": False,
|
278 |
"userSelectedModel": cls.userSelectedModel.get(model, model)
|
279 |
}
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
async with ClientSession(headers=common_headers) as session:
|
282 |
try:
|
|
|
283 |
async with session.post(
|
284 |
cls.api_endpoint,
|
285 |
headers=headers_api_chat_combined,
|
|
|
288 |
) as response_api_chat:
|
289 |
response_api_chat.raise_for_status()
|
290 |
text = await response_api_chat.text()
|
|
|
291 |
cleaned_response = cls.clean_response(text)
|
292 |
+
return cleaned_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
except ClientResponseError as e:
|
294 |
error_text = f"Error {e.status}: {e.message}"
|
295 |
try:
|
296 |
error_response = await e.response.text()
|
297 |
cleaned_error = cls.clean_response(error_response)
|
298 |
error_text += f" - {cleaned_error}"
|
|
|
299 |
except Exception:
|
300 |
pass
|
301 |
return error_text
|
302 |
except Exception as e:
|
|
|
303 |
return f"Unexpected error during /api/chat request: {str(e)}"
|
304 |
|
305 |
+
# If needed, you can integrate create_async_generator here
|
306 |
+
# ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
+
# Custom exception for model not working
|
309 |
+
class ModelNotWorkingException(Exception):
|
310 |
+
def __init__(self, model: str):
|
311 |
+
self.model = model
|
312 |
+
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
|
313 |
+
super().__init__(self.message)
|
314 |
|
315 |
async def cleanup_rate_limit_stores():
|
316 |
"""
|
|
|
324 |
logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
|
325 |
await asyncio.sleep(CLEANUP_INTERVAL)
|
326 |
|
327 |
+
async def rate_limiter_per_ip(request: Request):
|
328 |
+
"""
|
329 |
+
Rate limiter that enforces a limit based on the client's IP address.
|
330 |
+
"""
|
331 |
+
client_ip = request.client.host
|
332 |
+
current_time = time.time()
|
333 |
+
|
334 |
+
# Initialize or update the count and timestamp
|
335 |
+
if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
|
336 |
+
rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
|
337 |
+
else:
|
338 |
+
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
|
339 |
+
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
|
340 |
+
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
|
341 |
+
rate_limit_store[client_ip]["count"] += 1
|
342 |
+
|
343 |
+
async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
|
344 |
+
"""
|
345 |
+
Dependency to extract and validate the API key from the Authorization header.
|
346 |
+
"""
|
347 |
+
client_ip = request.client.host
|
348 |
+
if authorization is None or not authorization.startswith('Bearer '):
|
349 |
+
logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
|
350 |
+
raise HTTPException(status_code=401, detail='Invalid authorization header format')
|
351 |
+
api_key = authorization[7:]
|
352 |
+
if api_key not in API_KEYS:
|
353 |
+
logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
|
354 |
+
raise HTTPException(status_code=401, detail='Invalid API key')
|
355 |
+
return api_key
|
356 |
+
|
357 |
+
# FastAPI app setup
|
358 |
+
app = FastAPI()
|
359 |
+
|
360 |
# Add the cleanup task when the app starts
|
361 |
@app.on_event("startup")
|
362 |
async def startup_event():
|
363 |
asyncio.create_task(cleanup_rate_limit_stores())
|
364 |
logger.info("Started rate limit store cleanup task.")
|
365 |
|
366 |
+
# Middleware to enhance security and enforce Content-Type for specific endpoints
|
|
|
367 |
@app.middleware("http")
|
368 |
async def security_middleware(request: Request, call_next):
|
369 |
client_ip = request.client.host
|
|
|
386 |
response = await call_next(request)
|
387 |
return response
|
388 |
|
389 |
+
# Request Models
|
390 |
+
class Message(BaseModel):
|
391 |
+
role: str
|
392 |
+
content: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
+
class ChatRequest(BaseModel):
|
395 |
+
model: str
|
396 |
+
messages: List[Message]
|
397 |
+
temperature: Optional[float] = 1.0
|
398 |
+
top_p: Optional[float] = 1.0
|
399 |
+
n: Optional[int] = 1
|
400 |
+
max_tokens: Optional[int] = None
|
401 |
+
presence_penalty: Optional[float] = 0.0
|
402 |
+
frequency_penalty: Optional[float] = 0.0
|
403 |
+
logit_bias: Optional[Dict[str, float]] = None
|
404 |
+
user: Optional[str] = None
|
405 |
|
406 |
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
|
407 |
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
|
|
|
417 |
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
|
418 |
raise HTTPException(status_code=400, detail="Requested model is not available.")
|
419 |
|
420 |
+
# Process the request with actual message content, but don't log it
|
421 |
+
response_content = await Blackbox.generate_response(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
model=request.model,
|
423 |
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
|
424 |
+
temperature=request.temperature,
|
425 |
+
max_tokens=request.max_tokens
|
426 |
)
|
427 |
|
428 |
+
logger.info(f"Completed response generation for API key: {api_key} | IP: {client_ip}")
|
429 |
+
return {
|
430 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
431 |
+
"object": "chat.completion",
|
432 |
+
"created": int(datetime.now().timestamp()),
|
433 |
+
"model": request.model,
|
434 |
+
"choices": [
|
435 |
+
{
|
436 |
+
"index": 0,
|
437 |
+
"message": {
|
438 |
"role": "assistant",
|
439 |
+
"content": response_content
|
440 |
+
},
|
441 |
+
"finish_reason": "stop"
|
442 |
+
}
|
443 |
+
],
|
444 |
+
"usage": {
|
445 |
+
"prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
|
446 |
+
"completion_tokens": len(response_content.split()),
|
447 |
+
"total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
|
448 |
+
},
|
449 |
+
}
|
450 |
except ModelNotWorkingException as e:
|
451 |
logger.warning(f"Model not working: {e} | IP: {client_ip}")
|
452 |
raise HTTPException(status_code=503, detail=str(e))
|
|
|
454 |
logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
|
455 |
raise he
|
456 |
except Exception as e:
|
457 |
+
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
|
458 |
raise HTTPException(status_code=500, detail=str(e))
|
459 |
|
460 |
+
# Endpoint: GET /v1/models
|
|
|
461 |
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
|
462 |
async def get_models(req: Request):
|
463 |
client_ip = req.client.host
|
464 |
logger.info(f"Fetching available models from IP: {client_ip}")
|
465 |
return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}
|
466 |
|
467 |
+
# Endpoint: GET /v1/health
|
468 |
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
|
469 |
async def health_check(req: Request):
|
470 |
client_ip = req.client.host
|
471 |
logger.info(f"Health check requested from IP: {client_ip}")
|
472 |
return {"status": "ok"}
|
473 |
|
474 |
+
# Custom exception handler to match OpenAI's error format
|
|
|
475 |
@app.exception_handler(HTTPException)
|
476 |
async def http_exception_handler(request: Request, exc: HTTPException):
|
477 |
client_ip = request.client.host
|
|
|
488 |
},
|
489 |
)
|
490 |
|
|
|
|
|
491 |
if __name__ == "__main__":
|
492 |
import uvicorn
|
493 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|