test24 / main.py
Niansuh's picture
Update main.py
f9d7486 verified
raw
history blame
29.9 kB
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, AsyncGenerator, Union
from datetime import datetime
from aiohttp import ClientSession, ClientTimeout, ClientError, ClientResponseError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
from pydantic import BaseModel
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '') # Comma-separated available models
if not API_KEYS or API_KEYS == ['']:
logger.error("No API keys found. Please set the API_KEYS environment variable.")
raise Exception("API_KEYS environment variable not set.")
# Process available models
if AVAILABLE_MODELS:
AVAILABLE_MODELS = [model.strip() for model in AVAILABLE_MODELS.split(',') if model.strip()]
else:
AVAILABLE_MODELS = [] # If empty, all models are available
# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
# Define cleanup interval and window
CLEANUP_INTERVAL = 60 # seconds
RATE_LIMIT_WINDOW = 60 # seconds
async def cleanup_rate_limit_stores():
"""
Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
"""
while True:
current_time = time.time()
ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
for ip in ips_to_delete:
del rate_limit_store[ip]
logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
await asyncio.sleep(CLEANUP_INTERVAL)
async def rate_limiter_per_ip(request: Request):
"""
Rate limiter that enforces a limit based on the client's IP address.
"""
client_ip = request.client.host
current_time = time.time()
# Initialize or update the count and timestamp
if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
else:
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
rate_limit_store[client_ip]["count"] += 1
async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
"""
Dependency to extract and validate the API key from the Authorization header.
"""
client_ip = request.client.host
if authorization is None or not authorization.startswith('Bearer '):
logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
raise HTTPException(status_code=401, detail='Invalid authorization header format')
api_key = authorization[7:]
if api_key not in API_KEYS:
logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
raise HTTPException(status_code=401, detail='Invalid API key')
return api_key
# Custom exception for model not working
class ModelNotWorkingException(Exception):
def __init__(self, model: str):
self.model = model
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
super().__init__(self.message)
# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
def __init__(self, images: str, alt: str):
self.images = images
self.alt = alt
def to_data_uri(image: Any) -> str:
return "data:image/png;base64,..." # Replace with actual base64 data
# New Blackbox Class Integration
class Blackbox:
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_gpt_4 = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
image_models = ['ImageGeneration']
models = [
default_model,
'blackboxai-pro',
*image_models,
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
]
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"blackboxai": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'PythonAgent': {'mode': True, 'id': "Python Agent"},
'JavaAgent': {'mode': True, 'id': "Java Agent"},
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
'ReactAgent': {'mode': True, 'id': "React Agent"},
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
'PythonAgent': '@Python Agent',
'JavaAgent': '@Java Agent',
'JavaScriptAgent': '@JavaScript Agent',
'HTMLAgent': '@HTML Agent',
'GoogleCloudAgent': '@Google Cloud Agent',
'AndroidDeveloper': '@Android Developer',
'SwiftDeveloper': '@Swift Developer',
'Next.jsAgent': '@Next.js Agent',
'MongoDBAgent': '@MongoDB Agent',
'PyTorchAgent': '@PyTorch Agent',
'ReactAgent': '@React Agent',
'XcodeAgent': '@Xcode Agent',
'AngularJSAgent': '@AngularJS Agent',
'blackboxai-pro': '@BLACKBOXAI-PRO',
'ImageGeneration': '@Image Generation',
}
model_referers = {
"blackboxai": "/?model=blackboxai",
"gpt-4o": "/?model=gpt-4o",
"gemini-pro": "/?model=gemini-pro",
"claude-sonnet-3.5": "/?model=claude-sonnet-3.5"
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "ImageGeneration",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@staticmethod
def generate_random_string(length: int = 7) -> str:
characters = string.ascii_letters + string.digits
return ''.join(random.choices(characters, k=length))
@staticmethod
def generate_next_action() -> str:
return uuid.uuid4().hex
@staticmethod
def generate_next_router_state_tree() -> str:
router_state = [
"",
{
"children": [
"(chat)",
{
"children": [
"__PAGE__",
{}
]
}
]
},
None,
None,
True
]
return json.dumps(router_state)
@staticmethod
def clean_response(text: str) -> str:
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
cleaned_text = re.sub(pattern, '', text)
return cleaned_text
@classmethod
async def create_async_generator(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
image: Any = None,
image_name: Optional[str] = None,
webSearchMode: bool = False,
**kwargs
) -> AsyncGenerator[Union[str, ImageResponse], None]:
"""
Creates an asynchronous generator for streaming responses from Blackbox AI.
Parameters:
model (str): Model to use for generating responses.
messages (List[Dict[str, str]]): Message history.
proxy (Optional[str]): Proxy URL, if needed.
image (Any): Image data, if any.
image_name (Optional[str]): Name of the image, if any.
webSearchMode (bool): Enables or disables web search mode.
**kwargs: Additional keyword arguments.
Yields:
Union[str, ImageResponse]: Segments of the generated response or ImageResponse objects.
"""
model = cls.get_model(model)
chat_id = cls.generate_random_string()
next_action = cls.generate_next_action()
next_router_state_tree = cls.generate_next_router_state_tree()
agent_mode = cls.agentMode.get(model, {})
trending_agent_mode = cls.trendingAgentMode.get(model, {})
prefix = cls.model_prefixes.get(model, "")
formatted_prompt = ""
for message in messages:
role = message.get('role', '').capitalize()
content = message.get('content', '')
if role and content:
formatted_prompt += f"{role}: {content}\n"
if prefix:
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
referer_path = cls.model_referers.get(model, f"/?model={model}")
referer_url = f"{cls.url}{referer_path}"
common_headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'origin': cls.url,
'pragma': 'no-cache',
'priority': 'u=1, i',
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/129.0.0.0 Safari/537.36'
}
headers_api_chat = {
'Content-Type': 'application/json',
'Referer': referer_url
}
headers_api_chat_combined = {**common_headers, **headers_api_chat}
payload_api_chat = {
"messages": [
{
"id": chat_id,
"content": formatted_prompt,
"role": "user"
}
],
"id": chat_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": agent_mode,
"trendingAgentMode": trending_agent_mode,
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": webSearchMode,
"userSelectedModel": cls.userSelectedModel.get(model, model)
}
headers_chat = {
'Accept': 'text/x-component',
'Content-Type': 'text/plain;charset=UTF-8',
'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
'next-action': next_action,
'next-router-state-tree': next_router_state_tree,
'next-url': '/'
}
headers_chat_combined = {**common_headers, **headers_chat}
data_chat = '[]'
async with ClientSession(headers=common_headers) as session:
try:
async with session.post(
cls.api_endpoint,
headers=headers_api_chat_combined,
json=payload_api_chat,
proxy=proxy
) as response_api_chat:
response_api_chat.raise_for_status()
text = await response_api_chat.text()
cleaned_response = cls.clean_response(text)
if model in cls.image_models:
match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_response)
if match:
image_url = match.group(1)
image_response = ImageResponse(images=image_url, alt="Generated Image")
yield image_response
else:
yield cleaned_response
else:
if webSearchMode:
match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_response, re.DOTALL)
if match:
source_part = match.group(1).strip()
answer_part = cleaned_response[match.end():].strip()
try:
sources = json.loads(source_part)
source_formatted = "**Sources:**\n"
for item in sources[:5]:
title = item.get('title', 'No Title')
link = item.get('link', '#')
source_formatted += f"- [{title}]({link})\n"
final_response = f"{answer_part}\n\n{source_formatted}"
except json.JSONDecodeError:
final_response = f"{answer_part}\n\nSource information is unavailable."
else:
final_response = cleaned_response
else:
if '$~~~$' in cleaned_response:
final_response = cleaned_response.split('$~~~$')[0].strip()
else:
final_response = cleaned_response
yield final_response
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
try:
error_response = await e.response.text()
cleaned_error = cls.clean_response(error_response)
error_text += f" - {cleaned_error}"
except Exception:
pass
yield error_text
except Exception as e:
yield f"Unexpected error during /api/chat request: {str(e)}"
chat_url = f'{cls.url}/chat/{chat_id}?model={model}'
try:
async with session.post(
chat_url,
headers=headers_chat_combined,
data=data_chat,
proxy=proxy
) as response_chat:
response_chat.raise_for_status()
# Assuming some side-effect or logging is needed here
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
try:
error_response = await e.response.text()
cleaned_error = cls.clean_response(error_response)
error_text += f" - {cleaned_error}"
except Exception:
pass
yield error_text
except Exception as e:
yield f"Unexpected error during /chat/{chat_id} request: {str(e)}"
# FastAPI app setup
app = FastAPI()
# Add the cleanup task when the app starts
@app.on_event("startup")
async def startup_event():
asyncio.create_task(cleanup_rate_limit_stores())
logger.info("Started rate limit store cleanup task.")
# Middleware to enhance security and enforce Content-Type for specific endpoints
@app.middleware("http")
async def security_middleware(request: Request, call_next):
client_ip = request.client.host
# Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
if request.method == "POST" and request.url.path == "/v1/chat/completions":
content_type = request.headers.get("Content-Type")
if content_type != "application/json":
logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
return JSONResponse(
status_code=400,
content={
"error": {
"message": "Content-Type must be application/json",
"type": "invalid_request_error",
"param": None,
"code": None
}
},
)
response = await call_next(request)
return response
# Request Models
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: List[Message]
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
n: Optional[int] = 1
stream: Optional[bool] = False
stop: Optional[Union[str, List[str]]] = None
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
webSearchMode: Optional[bool] = False # Custom parameter
class TokenizerRequest(BaseModel):
text: str
def calculate_estimated_cost(prompt_tokens: int, completion_tokens: int) -> float:
"""
Calculate the estimated cost based on the number of tokens.
Replace the pricing below with your actual pricing model.
"""
# Example pricing: $0.00000268 per token
cost_per_token = 0.00000268
return round((prompt_tokens + completion_tokens) * cost_per_token, 8)
def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": content
},
"finish_reason": finish_reason
}
],
"usage": None, # To be filled in non-streaming responses
}
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
client_ip = req.client.host
# Redact user messages only for logging purposes
redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]
logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")
try:
# Validate that the requested model is available
if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
raise HTTPException(status_code=400, detail="Requested model is not available.")
# Process the request with actual message content, but don't log it
async_generator = Blackbox.create_async_generator(
model=request.model,
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages], # Actual message content used here
image=None,
image_name=None,
webSearchMode=request.webSearchMode
)
if request.stream:
async def generate():
try:
assistant_content = ""
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
# Handle image responses if necessary
image_markdown = f"![image]({chunk.images})\n"
assistant_content += image_markdown
response_chunk = create_response(image_markdown, request.model, finish_reason=None)
else:
assistant_content += chunk
# Yield the chunk as a partial choice
response_chunk = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"index": 0,
"delta": {"content": chunk, "role": "assistant"},
"finish_reason": None,
}
],
"usage": None, # Usage can be updated if you track tokens in real-time
}
yield f"data: {json.dumps(response_chunk)}\n\n"
# After all chunks are sent, send the final message with finish_reason
prompt_tokens = sum(len(msg['content'].split()) for msg in request.messages)
completion_tokens = len(assistant_content.split())
total_tokens = prompt_tokens + completion_tokens
estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)
final_response = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"message": {
"role": "assistant",
"content": assistant_content
},
"finish_reason": "stop",
"index": 0
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
"estimated_cost": estimated_cost
},
}
yield f"data: {json.dumps(final_response)}\n\n"
yield "data: [DONE]\n\n"
except HTTPException as he:
error_response = {"error": he.detail}
yield f"data: {json.dumps(error_response)}\n\n"
except Exception as e:
logger.exception(f"Error during streaming response generation from IP: {client_ip}.")
error_response = {"error": str(e)}
yield f"data: {json.dumps(error_response)}\n\n"
return StreamingResponse(generate(), media_type="text/event-stream")
else:
response_content = ""
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
response_content += f"![image]({chunk.images})\n"
else:
response_content += chunk
prompt_tokens = sum(len(msg.content.split()) for msg in request.messages)
completion_tokens = len(response_content.split())
total_tokens = prompt_tokens + completion_tokens
estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)
logger.info(f"Completed non-streaming response generation for API key: {api_key} | IP: {client_ip}")
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop",
"index": 0
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
"estimated_cost": estimated_cost
},
}
except ModelNotWorkingException as e:
logger.warning(f"Model not working: {e} | IP: {client_ip}")
raise HTTPException(status_code=503, detail=str(e))
except HTTPException as he:
logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
raise he
except Exception as e:
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
raise HTTPException(status_code=500, detail=str(e))
# Endpoint: POST /v1/tokenizer
@app.post("/v1/tokenizer", dependencies=[Depends(rate_limiter_per_ip)])
async def tokenizer(request: TokenizerRequest, req: Request):
client_ip = req.client.host
text = request.text
token_count = len(text.split())
logger.info(f"Tokenizer requested from IP: {client_ip} | Text length: {len(text)}")
return {"text": text, "tokens": token_count}
# Endpoint: GET /v1/models
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
async def get_models(req: Request):
client_ip = req.client.host
logger.info(f"Fetching available models from IP: {client_ip}")
return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}
# Endpoint: GET /v1/models/{model}/status
@app.get("/v1/models/{model}/status", dependencies=[Depends(rate_limiter_per_ip)])
async def model_status(model: str, req: Request):
client_ip = req.client.host
logger.info(f"Model status requested for '{model}' from IP: {client_ip}")
if model in Blackbox.models:
return {"model": model, "status": "available"}
elif model in Blackbox.model_aliases and Blackbox.model_aliases[model] in Blackbox.models:
actual_model = Blackbox.model_aliases[model]
return {"model": actual_model, "status": "available via alias"}
else:
logger.warning(f"Model not found: {model} from IP: {client_ip}")
raise HTTPException(status_code=404, detail="Model not found")
# Endpoint: GET /v1/health
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
async def health_check(req: Request):
client_ip = req.client.host
logger.info(f"Health check requested from IP: {client_ip}")
return {"status": "ok"}
# Endpoint: GET /v1/chat/completions (GET method)
@app.get("/v1/chat/completions")
async def chat_completions_get(req: Request):
client_ip = req.client.host
logger.info(f"GET request made to /v1/chat/completions from IP: {client_ip}, redirecting to 'about:blank'")
return RedirectResponse(url='about:blank')
# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
client_ip = request.client.host
logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
return JSONResponse(
status_code=exc.status_code,
content={
"error": {
"message": exc.detail,
"type": "invalid_request_error",
"param": None,
"code": None
}
},
)
# Run the application
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)