File size: 20,599 Bytes
e97905c
9cf0d3b
 
 
34226fa
b27d93f
1d3da36
18d089c
e97905c
 
42492be
71498b7
e97905c
 
 
479563b
e97905c
628f747
18d089c
 
 
 
dd3e05b
18d089c
1d3da36
 
e97905c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34226fa
 
 
 
18d089c
34226fa
 
e97905c
7937c8d
e97905c
 
a1ae61d
628f747
e97905c
 
7937c8d
18d089c
521a764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e97905c
521a764
 
 
 
a1ae61d
 
1571fac
 
 
e97905c
1571fac
e97905c
1571fac
18d089c
1571fac
18d089c
1571fac
18d089c
bf65fef
1571fac
18d089c
1571fac
18d089c
1571fac
521a764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571fac
80dc124
e97905c
18d089c
479563b
 
1571fac
479563b
18d089c
e97905c
 
dd3e05b
 
 
 
6b5328d
e97905c
 
 
 
 
 
 
479563b
18d089c
 
 
 
 
 
 
 
 
 
479563b
18d089c
 
 
 
 
 
 
 
 
 
 
 
80dc124
18d089c
 
 
 
 
 
dd3e05b
400d142
18d089c
 
1d3da36
18d089c
 
 
 
 
 
 
 
 
 
 
dd3e05b
e97905c
18d089c
 
 
1d3da36
479563b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b5328d
18d089c
 
 
479563b
18d089c
 
 
479563b
18d089c
 
 
 
628f747
479563b
 
6b5328d
7937c8d
479563b
 
7937c8d
 
 
479563b
 
 
2722c48
 
 
 
 
dd3e05b
2722c48
 
 
 
 
 
 
 
479563b
80a3863
 
e97905c
 
dd3e05b
 
34226fa
e97905c
 
 
 
 
dd3e05b
b27d93f
479563b
dd3e05b
e97905c
18d089c
479563b
34226fa
45670a8
479563b
18d089c
 
 
 
e97905c
479563b
18d089c
479563b
 
 
18d089c
 
 
 
 
 
 
 
 
 
 
 
 
2722c48
1cfe11e
e97905c
1cfe11e
18d089c
2722c48
e97905c
479563b
 
 
dd3e05b
479563b
 
 
 
 
 
 
 
 
 
18d089c
479563b
dd3e05b
479563b
dd3e05b
479563b
 
18d089c
 
 
 
 
 
 
 
 
34226fa
e97905c
 
 
18d089c
 
479563b
e97905c
 
 
479563b
 
e97905c
 
 
18d089c
 
 
 
 
 
e97905c
18d089c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, AsyncGenerator
from datetime import datetime  # Added import for datetime

from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import StreamingResponse
from pydantic import BaseModel

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',')  # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60'))  # Requests per minute

if not API_KEYS or API_KEYS == ['']:
    logger.error("No API keys found. Please set the API_KEYS environment variable.")
    raise Exception("API_KEYS environment variable not set.")

# Simple in-memory rate limiter
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})

async def get_api_key(authorization: str = Header(...)) -> str:
    if not authorization.startswith('Bearer '):
        logger.warning("Invalid authorization header format.")
        raise HTTPException(status_code=401, detail='Invalid authorization header format')
    api_key = authorization[7:]
    if api_key not in API_KEYS:
        logger.warning(f"Invalid API key attempted: {api_key}")
        raise HTTPException(status_code=401, detail='Invalid API key')
    return api_key

async def rate_limiter(api_key: str = Depends(get_api_key)):
    current_time = time.time()
    window_start = rate_limit_store[api_key]["timestamp"]
    if current_time - window_start > 60:
        rate_limit_store[api_key] = {"count": 1, "timestamp": current_time}
    else:
        if rate_limit_store[api_key]["count"] >= RATE_LIMIT:
            logger.warning(f"Rate limit exceeded for API key: {api_key}")
            raise HTTPException(status_code=429, detail='Rate limit exceeded')
        rate_limit_store[api_key]["count"] += 1

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    return "data:image/png;base64,..."  # Replace with actual base64 data

class Blackbox:
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True

    default_model = 'blackboxai'
    image_models = ['ImageGeneration']
    models = [
        default_model,
        'blackboxai-pro',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
        *image_models,
        'Niansuh',
    ]

    agentMode = {
        'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
        'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
    }
    trendingAgentMode = {
        "blackboxai": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
        'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
        'PythonAgent': {'mode': True, 'id': "Python Agent"},
        'JavaAgent': {'mode': True, 'id': "Java Agent"},
        'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
        'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
        'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
        'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
        'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
        'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
        'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
        'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
        'ReactAgent': {'mode': True, 'id': "React Agent"},
        'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
        'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
    }

    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }

    model_prefixes = {
        'gpt-4o': '@GPT-4o',
        'gemini-pro': '@Gemini-PRO',
        'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
        'PythonAgent': '@Python Agent',
        'JavaAgent': '@Java Agent',
        'JavaScriptAgent': '@JavaScript Agent',
        'HTMLAgent': '@HTML Agent',
        'GoogleCloudAgent': '@Google Cloud Agent',
        'AndroidDeveloper': '@Android Developer',
        'SwiftDeveloper': '@Swift Developer',
        'Next.jsAgent': '@Next.js Agent',
        'MongoDBAgent': '@MongoDB Agent',
        'PyTorchAgent': '@PyTorch Agent',
        'ReactAgent': '@React Agent',
        'XcodeAgent': '@Xcode Agent',
        'AngularJSAgent': '@AngularJS Agent',
        'blackboxai-pro': '@BLACKBOXAI-PRO',
        'ImageGeneration': '@Image Generation',
        'Niansuh': '@Niansuh',
    }

    model_referers = {
        "blackboxai": f"{url}/?model=blackboxai",
        "gpt-4o": f"{url}/?model=gpt-4o",
        "gemini-pro": f"{url}/?model=gemini-pro",
        "claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
    }

    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "claude-3.5-sonnet": "claude-sonnet-3.5",
        "flux": "ImageGeneration",
        "niansuh": "Niansuh",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        image: Any = None,
        image_name: Optional[str] = None,
        webSearchMode: bool = False,
        **kwargs
    ) -> AsyncGenerator[Any, None]:
        model = cls.get_model(model)
        logger.info(f"Selected model: {model}")

        if not cls.working or model not in cls.models:
            logger.error(f"Model {model} is not working or not supported.")
            raise ModelNotWorkingException(model)
        
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "priority": "u=1, i",
            "referer": cls.model_referers.get(model, cls.url),
            "sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
        }

        if model in cls.model_prefixes:
            prefix = cls.model_prefixes[model]
            if not messages[0]['content'].startswith(prefix):
                logger.debug(f"Adding prefix '{prefix}' to the first message.")
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"
        
        random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
        messages[-1]['id'] = random_id
        messages[-1]['role'] = 'user'

        # Don't log the full message content for privacy
        logger.debug(f"Generated message ID: {random_id} for model: {model}")

        if image is not None:
            messages[-1]['data'] = {
                'fileText': '',
                'imageBase64': to_data_uri(image),
                'title': image_name
            }
            messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
            logger.debug("Image data added to the message.")
        
        data = {
            "messages": messages,
            "id": random_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": {},
            "trendingAgentMode": {},
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 99999999,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "userSelectedModel": None,
            "webSearchMode": webSearchMode,
        }

        if model in cls.agentMode:
            data["agentMode"] = cls.agentMode[model]
        elif model in cls.trendingAgentMode:
            data["trendingAgentMode"] = cls.trendingAgentMode[model]
        elif model in cls.userSelectedModel:
            data["userSelectedModel"] = cls.userSelectedModel[model]
        logger.info(f"Sending request to {cls.api_endpoint} with data (excluding messages).")

        timeout = ClientTimeout(total=60)  # Set an appropriate timeout
        retry_attempts = 10  # Set the number of retry attempts

        for attempt in range(retry_attempts):
            try:
                async with ClientSession(headers=headers, timeout=timeout) as session:
                    async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                        response.raise_for_status()
                        logger.info(f"Received response with status {response.status}")
                        if model == 'ImageGeneration':
                            response_text = await response.text()
                            url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                            if url_match:
                                image_url = url_match.group(0)
                                logger.info(f"Image URL found.")
                                yield ImageResponse(image_url, alt=messages[-1]['content'])
                            else:
                                logger.error("Image URL not found in the response.")
                                raise Exception("Image URL not found in the response")
                        else:
                            full_response = ""
                            search_results_json = ""
                            try:
                                async for chunk, _ in response.content.iter_chunks():
                                    if chunk:
                                        decoded_chunk = chunk.decode(errors='ignore')
                                        decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                                        if decoded_chunk.strip():
                                            if '$~~~$' in decoded_chunk:
                                                search_results_json += decoded_chunk
                                            else:
                                                full_response += decoded_chunk
                                                yield decoded_chunk
                                logger.info("Finished streaming response chunks.")
                            except Exception as e:
                                logger.exception("Error while iterating over response chunks.")
                                raise e
                            if data["webSearchMode"] and search_results_json:
                                match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
                                if match:
                                    try:
                                        search_results = json.loads(match.group(1))
                                        formatted_results = "\n\n**Sources:**\n"
                                        for i, result in enumerate(search_results[:5], 1):
                                            formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
                                        logger.info("Formatted search results.")
                                        yield formatted_results
                                    except json.JSONDecodeError as je:
                                        logger.error("Failed to parse search results JSON.")
                                        raise je
                break  # Exit the retry loop if successful
            except ClientError as ce:
                logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=502, detail="Error communicating with the external API. | NiansuhAI")
            except asyncio.TimeoutError:
                logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=504, detail="External API request timed out. | NiansuhAI")
            except Exception as e:
                logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=500, detail=str(e))

# FastAPI app setup
app = FastAPI()

class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    stream: Optional[bool] = False
    webSearchMode: Optional[bool] = False

def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": content, "role": "assistant"},
                "finish_reason": finish_reason,
            }
        ],
        "usage": None,
    }

@app.post("/niansuhai/v1/chat/completions", dependencies=[Depends(rate_limiter)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
    logger.info(f"Received chat completions request from API key: {api_key} | Model: {request.model}")
    
    try:
        # Validate that the requested model is available
        if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
            logger.warning(f"Attempt to use unavailable model: {request.model}")
            raise HTTPException(status_code=400, detail="Requested model is not available.")

        # Process the request but do not log sensitive content
        async_generator = Blackbox.create_async_generator(
            model=request.model,
            messages=[{"role": msg.role, "content": "[redacted]"} for msg in request.messages],  # Redact user messages in logs
            image=None,
            image_name=None,
            webSearchMode=request.webSearchMode
        )

        if request.stream:
            async def generate():
                try:
                    async for chunk in async_generator:
                        if isinstance(chunk, ImageResponse):
                            image_markdown = f"![image]({chunk.url})"
                            response_chunk = create_response(image_markdown, request.model)
                        else:
                            response_chunk = create_response(chunk, request.model)
                        
                        yield f"data: {json.dumps(response_chunk)}\n\n"
                    
                    yield "data: [DONE]\n\n"
                except HTTPException as he:
                    error_response = {"error": he.detail}
                    yield f"data: {json.dumps(error_response)}\n\n"
                except Exception as e:
                    logger.exception("Error during streaming response generation.")
                    error_response = {"error": str(e)}
                    yield f"data: {json.dumps(error_response)}\n\n"

            return StreamingResponse(generate(), media_type="text/event-stream")
        else:
            response_content = ""
            async for chunk in async_generator:
                if isinstance(chunk, ImageResponse):
                    response_content += f"![image]({chunk.url})\n"
                else:
                    response_content += chunk

            logger.info(f"Completed non-streaming response generation for API key: {api_key}")
            return {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "choices": [
                    {
                        "message": {
                            "role": "assistant",
                            "content": response_content
                        },
                        "finish_reason": "stop",
                        "index": 0
                    }
                ],
                "usage": {
                    "prompt_tokens": sum(len(msg['content'].split()) for msg in request.messages),
                    "completion_tokens": len(response_content.split()),
                    "total_tokens": sum(len(msg['content'].split()) for msg in request.messages) + len(response_content.split())
                },
            }
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail}")
        raise he
    except Exception as e:
        logger.exception("An unexpected error occurred while processing the chat completions request.")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/niansuhai/v1/models", dependencies=[Depends(rate_limiter)])
async def get_models(api_key: str = Depends(get_api_key)):
    logger.info(f"Fetching available models for API key: {api_key}")
    return {"data": [{"id": model} for model in Blackbox.models]}

# Additional endpoints for better functionality
@app.get("/niansuhai/v1/health", dependencies=[Depends(rate_limiter)])
async def health_check(api_key: str = Depends(get_api_key)):
    logger.info(f"Health check requested by API key: {api_key}")
    return {"status": "ok"}

@app.get("/niansuhai/v1/models/{model}/status", dependencies=[Depends(rate_limiter)])
async def model_status(model: str, api_key: str = Depends(get_api_key)):
    logger.info(f"Model status requested for '{model}' by API key: {api_key}")
    if model in Blackbox.models:
        return {"model": model, "status": "available"}
    elif model in Blackbox.model_aliases:
        actual_model = Blackbox.model_aliases[model]
        return {"model": actual_model, "status": "available via alias"}
    else:
        logger.warning(f"Model not found: {model}")
        raise HTTPException(status_code=404, detail="Model not found")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)