File size: 9,367 Bytes
2722c48
 
9cf0d3b
 
 
34226fa
b27d93f
2722c48
 
7937c8d
34226fa
2722c48
de1ffc5
628f747
34226fa
 
 
 
 
 
 
7937c8d
 
 
a1ae61d
 
628f747
7937c8d
142d11a
7937c8d
 
 
628f747
7937c8d
 
 
 
628f747
 
8a3edf7
a1ae61d
 
8a3edf7
b27d93f
7937c8d
80dc124
 
 
 
4b6f3a0
80dc124
 
 
 
 
 
 
8a3edf7
 
 
 
 
 
 
 
 
 
 
b27d93f
8a3edf7
 
 
 
 
b27d93f
8a3edf7
 
 
 
 
a1ae61d
 
7937c8d
a1ae61d
 
 
 
8a3edf7
 
a1ae61d
 
 
bf65fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80dc124
bf65fef
 
 
 
 
 
 
 
 
 
80dc124
bf65fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80dc124
bf65fef
 
 
 
 
 
 
 
 
 
a1ae61d
bf65fef
 
 
 
 
 
 
 
0d812a5
bf65fef
 
 
 
 
 
 
 
 
628f747
2722c48
 
 
7937c8d
 
 
 
 
 
 
b27d93f
2722c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a3863
 
187715b
2722c48
b27d93f
34226fa
 
 
 
2722c48
45670a8
34226fa
b27d93f
34226fa
 
 
 
 
 
 
45670a8
 
2722c48
 
1cfe11e
c93f285
 
1cfe11e
4b6f3a0
2722c48
 
45670a8
 
2722c48
 
4780761
c93f285
4780761
a1ae61d
 
 
45670a8
 
 
 
 
 
2722c48
 
 
 
45670a8
2722c48
45670a8
 
 
 
34226fa
 
 
a1ae61d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from __future__ import annotations

import re
import random
import string
import uuid
import json
from aiohttp import ClientSession
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
from datetime import datetime
from fastapi.responses import StreamingResponse

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please wait for NiansuhAI to fix this. Thank you for your patience."
        super().__init__(self.message)

# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    return "data:image/png;base64,..."  # Replace with actual base64 data

class AsyncGeneratorProvider:
    pass

class ProviderModelMixin:
    pass

class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True
    
    default_model = 'blackbox'
    models = [
        'blackbox',
        'gemini-1.5-flash',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'ImageGenerationLV45LJp',
        'gpt-4o',
        'gemini-pro',
        'claude-sonnet-3.5',
    ]

    agentMode = {
        'ImageGenerationLV45LJp': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
    }

    trendingAgentMode = {
        "blackbox": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
    }
    
    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }
    
    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "flux": "ImageGenerationLV45LJp",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
async def create_async_generator(
    cls,
    model: str,
    messages: List[Dict[str, str]],
    proxy: Optional[str] = None,
    image: Optional[Any] = None,
    image_name: Optional[str] = None,
    **kwargs
) -> Any:
    model = cls.get_model(model)

    # Check if the model is working
    if not cls.working or model not in cls.models:
        raise ModelNotWorkingException(model)

    headers = {
        "accept": "*/*",
        "accept-language": "en-US,en;q=0.9",
        "cache-control": "no-cache",
        "content-type": "application/json",
        "origin": cls.url,
        "pragma": "no-cache",
        "referer": f"{cls.url}/",
        "sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"',
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": '"Linux"',
        "sec-fetch-dest": "empty",
        "sec-fetch-mode": "cors",
        "sec-fetch-site": "same-origin",
        "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
    }

    if model in cls.userSelectedModel:
        prefix = f"@{cls.userSelectedModel[model]}"
        if not messages[0]['content'].startswith(prefix):
            messages[0]['content'] = f"{prefix} {messages[0]['content']}"

    async with ClientSession(headers=headers) as session:
        if image is not None:
            messages[-1]["data"] = {
                "fileText": image_name,
                "imageBase64": to_data_uri(image)
            }
        
        random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))

        data = {
            "messages": messages,
            "id": random_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": {},
            "trendingAgentMode": {},
            "userSelectedModel": None,
            "userSystemPrompt": None,
            "isMicMode": False,
            "maxTokens": 99999999,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "webSearchMode": False,
        }

        if model in cls.agentMode:
            data["agentMode"] = cls.agentMode[model]
        elif model in cls.trendingAgentMode:
            data["trendingAgentMode"] = cls.trendingAgentMode[model]
        elif model in cls.userSelectedModel:
            data["userSelectedModel"] = cls.userSelectedModel[model]
        
        async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
            response.raise_for_status()
            response_text = await response.text()
            
            if not response_text:  # Check for empty response
                raise ModelNotWorkingException(model)

            if model == 'ImageGenerationLV45LJp':
                url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                if url_match:
                    image_url = url_match.group(0)
                    yield ImageResponse(image_url, alt=messages[-1]['content'])
                else:
                    raise Exception("Image URL not found in the response")
            else:
                async for chunk in response.content.iter_any():
                    if chunk:
                        decoded_chunk = chunk.decode(errors='ignore')  # Handle decoding errors
                        decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                        if decoded_chunk.strip():
                            yield decoded_chunk


# FastAPI app setup
app = FastAPI()

class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    stream: Optional[bool] = False  # Add this for streaming

def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": content, "role": "assistant"},
                "finish_reason": finish_reason,
            }
        ],
        "usage": None,
    }

@app.post("/niansuhai/v1/chat/completions")
async def chat_completions(request: ChatRequest):
    # Validate the model
    valid_models = Blackbox.models + list(Blackbox.userSelectedModel.keys()) + list(Blackbox.model_aliases.keys())
    if request.model not in valid_models:
        raise HTTPException(status_code=400, detail=f"Invalid model name: {request.model}. Valid models are: {valid_models}")

    messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]

    try:
        async_generator = Blackbox.create_async_generator(
            model=request.model,
            messages=messages,
            image=None,
            image_name=None
        )
    except ModelNotWorkingException as e:
        raise HTTPException(status_code=503, detail=str(e))

    if request.stream:
        async def generate():
            async for chunk in async_generator:
                if isinstance(chunk, ImageResponse):
                    image_markdown = f"![image]({chunk.url})"
                    yield f"data: {json.dumps(create_response(image_markdown, request.model))}\n\n"
                else:
                    yield f"data: {json.dumps(create_response(chunk, request.model))}\n\n"
            yield "data: [DONE]\n\n"

        return StreamingResponse(generate(), media_type="text/event-stream")
    else:
        response_content = ""
        async for chunk in async_generator:
            if isinstance(chunk, ImageResponse):
                response_content += f"![image]({chunk.url})\n"
            else:
                response_content += chunk

        return {
            "id": f"chatcmpl-{uuid.uuid4()}",
            "object": "chat.completion",
            "created": int(datetime.now().timestamp()),
            "model": request.model,
            "choices": [
                {
                    "message": {
                        "role": "assistant",
                        "content": response_content
                    },
                    "finish_reason": "stop",
                    "index": 0
                }
            ],
            "usage": None,
        }

@app.get("/niansuhai/v1/models")
async def get_models():
    return {"models": Blackbox.models}