File size: 7,227 Bytes
80dc124
 
628f747
 
 
 
80dc124
 
 
628f747
80dc124
628f747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80dc124
 
 
 
 
628f747
80dc124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f747
 
80dc124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f747
80dc124
628f747
 
 
 
 
 
 
 
 
 
 
 
 
 
a36f60f
 
628f747
 
 
 
a36f60f
 
 
 
628f747
 
 
 
 
 
 
 
 
a36f60f
628f747
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from __future__ import annotations

import re
import random
import string
from aiohttp import ClientSession
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any, Optional

# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    # Placeholder for actual image encoding
    return "data:image/png;base64,..."  # Replace with actual base64 data

class AsyncGeneratorProvider:
    pass

class ProviderModelMixin:
    pass

class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True
    
    default_model = 'blackbox'
    models = [
        'blackbox',
        'gemini-1.5-flash',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'ImageGenerationLV45LJp',
        'gpt-4o',
        'gemini-pro',
        'claude-sonnet-3.5',
    ]

    agentMode = {
        'ImageGenerationLV45LJp': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
    }

    trendingAgentMode = {
        "blackbox": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
    }
    
    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }
    
    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "flux": "ImageGenerationLV45LJp",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        image: Optional[Any] = None,
        image_name: Optional[str] = None,
        **kwargs
    ) -> Any:
        model = cls.get_model(model)
        
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "referer": f"{cls.url}/",
            "sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
        }

        if model in cls.userSelectedModel:
            prefix = f"@{cls.userSelectedModel[model]}"
            if not messages[0]['content'].startswith(prefix):
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"
        
        async with ClientSession(headers=headers) as session:
            if image is not None:
                messages[-1]["data"] = {
                    "fileText": image_name,
                    "imageBase64": to_data_uri(image)
                }
            
            random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))

            data = {
                "messages": messages,
                "id": random_id,
                "previewToken": None,
                "userId": None,
                "codeModelMode": True,
                "agentMode": {},
                "trendingAgentMode": {},
                "userSelectedModel": None,
                "userSystemPrompt": None,
                "isMicMode": False,
                "maxTokens": 1024,
                "playgroundTopP": 0.9,
                "playgroundTemperature": 0.5,
                "isChromeExt": False,
                "githubToken": None,
                "clickedAnswer2": False,
                "clickedAnswer3": False,
                "clickedForceWebSearch": False,
                "visitFromDelta": False,
                "mobileClient": False,
                "webSearchMode": False,
            }

            if model in cls.agentMode:
                data["agentMode"] = cls.agentMode[model]
            elif model in cls.trendingAgentMode:
                data["trendingAgentMode"] = cls.trendingAgentMode[model]
            elif model in cls.userSelectedModel:
                data["userSelectedModel"] = cls.userSelectedModel[model]
            
            async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                response.raise_for_status()
                if model == 'ImageGenerationLV45LJp':
                    response_text = await response.text()
                    url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                    if url_match:
                        image_url = url_match.group(0)
                        yield ImageResponse(image_url, alt=messages[-1]['content'])
                    else:
                        raise Exception("Image URL not found in the response")
                else:
                    async for chunk in response.content.iter_any():
                        if chunk:
                            decoded_chunk = chunk.decode()
                            decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                            if decoded_chunk.strip():
                                yield decoded_chunk

# FastAPI app setup
app = FastAPI()

class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]

@app.post("/v1/chat/completions")
async def chat_completions(request: ChatRequest):
    messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]

    # Use an async generator to get the response
    async_generator = Blackbox.create_async_generator(
        model=request.model,
        messages=messages
    )

    response_content = ""
    async for chunk in async_generator:
        response_content += chunk if isinstance(chunk, str) else chunk.content  # Concatenate response

    return {
        "id": "chatcmpl-1234",  # Example ID, generate as needed
        "object": "chat.completion",
        "created": 1690000000,  # Replace with actual timestamp
        "model": request.model,
        "choices": [
            {
                "message": {
                    "role": "assistant",
                    "content": response_content
                },
                "finish_reason": "stop",
                "index": 0
            }
        ]
    }