File size: 9,538 Bytes
7070320 9cf0d3b 7070320 8a3edf7 7070320 7937c8d 7070320 9cf0d3b 628f747 7937c8d 628f747 7937c8d 8a3edf7 7937c8d 9cf0d3b 7937c8d 628f747 7937c8d 628f747 8a3edf7 9cf0d3b 7937c8d 80dc124 8a3edf7 9cf0d3b 8a3edf7 9cf0d3b 8a3edf7 80dc124 7937c8d 8a3edf7 628f747 7937c8d 8a3edf7 80dc124 8a3edf7 80dc124 8a3edf7 80dc124 8a3edf7 9cf0d3b 7937c8d 8a3edf7 7937c8d 80dc124 8a3edf7 80dc124 8a3edf7 7937c8d 80dc124 8a3edf7 0d812a5 9cf0d3b 8a3edf7 628f747 9cf0d3b 7937c8d 9cf0d3b 8a3edf7 9cf0d3b 4e4fed1 628f747 9cf0d3b 45670a8 9cf0d3b 45670a8 9cf0d3b 45670a8 2f2df1f 45670a8 8e53718 45670a8 9cf0d3b 45670a8 8e53718 45670a8 9cf0d3b 45670a8 9cf0d3b 45670a8 9cf0d3b 45670a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
import uuid
import logging
import json
import re
import random
import string
from datetime import datetime
from typing import Any, Dict, List, Optional
import httpx
from fastapi import FastAPI, HTTPException, Depends
from pydantic import BaseModel
from starlette.middleware.cors import CORSMiddleware
from starlette.responses import StreamingResponse
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# FastAPI app setup
app = FastAPI()
# CORS middleware setup
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
def __init__(self, url: str, alt: str):
self.url = url
self.alt = alt
def to_data_uri(image: Any) -> str:
# Placeholder for actual image encoding
return "data:image/png;base64,..." # Replace with actual base64 data
# Define models and providers
class AsyncGeneratorProvider:
pass
class ProviderModelMixin:
pass
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackbox'
models = [
'blackbox',
'gemini-1.5-flash',
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'ImageGenerationLV45LJp',
'gpt-4o',
'gemini-pro',
'claude-sonnet-3.5',
]
agentMode = {
'ImageGenerationLV45LJp': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"blackbox": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"flux": "ImageGenerationLV45LJp",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.userSelectedModel:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
image: Optional[Any] = None,
image_name: Optional[str] = None,
**kwargs
) -> Any:
model = cls.get_model(model)
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": cls.url,
"pragma": "no-cache",
"referer": f"{cls.url}/",
"sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
}
if model in cls.userSelectedModel:
prefix = f"@{cls.userSelectedModel[model]}"
if not messages[0]['content'].startswith(prefix):
messages[0]['content'] = f"{prefix} {messages[0]['content']}"
async with httpx.AsyncClient(headers=headers) as session:
if image is not None:
messages[-1]["data"] = {
"fileText": image_name,
"imageBase64": to_data_uri(image)
}
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
data = {
"messages": messages,
"id": random_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": {},
"trendingAgentMode": {},
"userSelectedModel": None,
"userSystemPrompt": None,
"isMicMode": False,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": False,
}
if model in cls.agentMode:
data["agentMode"] = cls.agentMode[model]
elif model in cls.trendingAgentMode:
data["trendingAgentMode"] = cls.trendingAgentMode[model]
elif model in cls.userSelectedModel:
data["userSelectedModel"] = cls.userSelectedModel[model]
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
if model == 'ImageGenerationLV45LJp':
response_text = await response.text()
url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
if url_match:
image_url = url_match.group(0)
yield ImageResponse(image_url, alt=messages[-1]['content'])
else:
raise Exception("Image URL not found in the response")
else:
async for chunk in response.aiter_bytes():
if chunk:
decoded_chunk = chunk.decode()
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
if decoded_chunk.strip():
yield decoded_chunk
# Message and chat request models
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: List[Message]
stream: Optional[bool] = False
# Verify app secret (placeholder)
async def verify_app_secret(app_secret: str):
if app_secret != os.getenv("APP_SECRET"):
raise HTTPException(status_code=403, detail="Forbidden")
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatRequest, app_secret: str = Depends(verify_app_secret)):
logger.info(f"Received chat completion request for model: {request.model}")
# Validate model
if request.model not in Blackbox.models:
raise HTTPException(
status_code=400,
detail=f"Model {request.model} is not allowed. Allowed models are: {', '.join(Blackbox.models)}",
)
# Generate a UUID for the conversation
conversation_id = str(uuid.uuid4()).replace("-", "")
json_data = {
"attachments": [],
"conversationId": conversation_id,
"prompt": "\n".join(
[f"{msg.role}: {msg.content}" for msg in request.messages]
),
}
headers["uniqueid"] = conversation_id
async def generate():
async with httpx.AsyncClient() as client:
try:
async with client.stream('POST', f'{Blackbox.api_endpoint}', headers=headers, json=json_data, timeout=120.0) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if line and line != "[DONE]":
content = json.loads(line)["data"]
yield f"data: {json.dumps(content)}\n\n"
yield "data: [DONE]\n\n"
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error occurred: {e}")
raise HTTPException(status_code=e.response.status_code, detail=str(e))
except httpx.RequestError as e:
logger.error(f"An error occurred while requesting: {e}")
raise HTTPException(status_code=500, detail=str(e))
if request.stream:
return StreamingResponse(generate(), media_type="text/event-stream")
else:
full_response = ""
async for chunk in generate():
if chunk.startswith("data: ") and not chunk[6:].startswith("[DONE]"):
data = json.loads(chunk[6:])
full_response += data.get("choices", [{}])[0].get("delta", {}).get("content", "")
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": full_response},
"finish_reason": "stop",
}
],
"usage": None,
}
|