File size: 23,800 Bytes
3908754
9cf0d3b
 
 
34226fa
b27d93f
1d3da36
18d089c
 
3908754
 
 
6b5328d
 
2722c48
3908754
 
 
 
 
 
 
 
628f747
18d089c
 
 
 
 
 
 
 
1d3da36
 
3908754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e6f25
3908754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34226fa
 
 
 
18d089c
34226fa
 
3908754
7937c8d
 
a1ae61d
 
628f747
7937c8d
3908754
 
 
6b5328d
3908754
 
 
 
 
 
 
 
 
 
6b5328d
 
 
 
 
 
 
 
3908754
7937c8d
3908754
18d089c
628f747
3908754
8a3edf7
a1ae61d
 
8a3edf7
18d089c
 
 
80dc124
18d089c
 
80dc124
4b6f3a0
80dc124
 
 
18d089c
80dc124
18d089c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80dc124
 
8a3edf7
18d089c
 
8a3edf7
 
18d089c
8a3edf7
 
 
 
18d089c
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3edf7
3908754
8a3edf7
 
 
 
 
3908754
18d089c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908754
18d089c
 
 
 
 
 
3908754
8a3edf7
 
18d089c
 
 
8a3edf7
 
a1ae61d
 
7937c8d
a1ae61d
 
 
 
8a3edf7
 
a1ae61d
 
 
1571fac
 
 
6b5328d
1571fac
18d089c
1571fac
18d089c
1571fac
18d089c
1571fac
18d089c
bf65fef
1571fac
18d089c
1571fac
18d089c
1571fac
 
 
 
 
 
 
18d089c
 
 
1571fac
 
 
 
 
18d089c
1571fac
80dc124
18d089c
 
6b5328d
 
 
 
 
 
 
 
1571fac
6b5328d
18d089c
6b5328d
 
 
 
 
 
 
 
 
 
18d089c
6b5328d
 
 
 
 
18d089c
 
 
 
 
 
 
 
 
 
3908754
18d089c
 
 
 
 
 
 
 
 
 
 
 
80dc124
18d089c
 
 
 
 
 
 
400d142
18d089c
 
1d3da36
18d089c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d3da36
6b5328d
 
 
 
 
 
 
18d089c
 
 
3908754
18d089c
 
 
3908754
18d089c
 
 
 
628f747
3908754
6b5328d
 
 
 
 
 
 
 
 
 
7937c8d
3908754
6b5328d
 
 
 
 
 
 
 
 
 
7937c8d
 
3908754
 
 
 
 
 
 
 
 
 
 
 
 
 
7937c8d
3908754
 
2722c48
3908754
2722c48
 
 
 
 
 
 
 
 
 
 
 
 
3908754
80a3863
 
3908754
 
 
94e6f25
2edde86
 
94e6f25
 
2edde86
34226fa
6b5328d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908754
b27d93f
2edde86
6b5328d
3908754
18d089c
2edde86
34226fa
45670a8
2edde86
18d089c
 
3908754
18d089c
 
 
2edde86
3908754
 
18d089c
2edde86
3908754
 
18d089c
 
 
 
 
 
 
 
 
 
 
 
 
 
3908754
2722c48
1cfe11e
18d089c
3908754
1cfe11e
18d089c
3908754
 
 
2722c48
18d089c
3908754
 
 
 
2edde86
3908754
 
 
 
 
 
18d089c
3908754
 
 
 
 
 
18d089c
 
 
 
 
 
 
 
 
34226fa
3908754
94e6f25
3908754
94e6f25
2edde86
94e6f25
 
18d089c
 
 
3908754
94e6f25
3908754
94e6f25
 
2edde86
94e6f25
 
18d089c
 
 
 
 
 
 
 
 
3908754
94e6f25
3908754
2edde86
 
 
3908754
 
 
 
18d089c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request, Depends, Header, status
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field, validator
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
from datetime import datetime
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
import tiktoken
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# Initialize FastAPI app
app = FastAPI(title="OpenAI-Compatible API")

# Configure CORS (adjust origins as needed)
origins = [
    "*",  # Allow all origins; replace with specific origins in production
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize Rate Limiter from environment variable
RATE_LIMIT = os.getenv("RATE_LIMIT", "60/minute")  # Default to 60 requests per minute
limiter = Limiter(key_func=get_remote_address, default_limits=[RATE_LIMIT])
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)

# API Key Authentication
API_KEYS = set(api_key.strip() for api_key in os.getenv("API_KEYS", "").split(",") if api_key.strip())

async def get_api_key(authorization: Optional[str] = Header(None)):
    """
    Dependency to validate API Key from the Authorization header.
    """
    if authorization is None:
        raise HTTPException(
            status_code=status.HTTP_401_UNAUTHORIZED,
            detail="Authorization header missing",
            headers={"WWW-Authenticate": "Bearer"},
        )
    parts = authorization.split()
    if parts[0].lower() != "bearer" or len(parts) != 2:
        raise HTTPException(
            status_code=status.HTTP_401_UNAUTHORIZED,
            detail="Invalid authorization header format",
            headers={"WWW-Authenticate": "Bearer"},
        )
    token = parts[1]
    if token not in API_KEYS:
        raise HTTPException(
            status_code=status.HTTP_401_UNAUTHORIZED,
            detail="Invalid API Key",
            headers={"WWW-Authenticate": "Bearer"},
        )
    return token

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

# Mock implementations for ImageResponse and to_data_uri (custom functionality)
class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    return "data:image/png;base64,..."  # Replace with actual base64 data if needed

# Token Counting using tiktoken
def count_tokens(messages: List[Dict[str, Any]], model: str) -> int:
    """
    Counts the number of tokens in the messages using tiktoken.
    Adjust the encoding based on the model.
    """
    try:
        encoding = tiktoken.get_encoding("cl100k_base")  # Adjust encoding as per model
    except:
        encoding = tiktoken.get_encoding("cl100k_base")  # Default encoding
    tokens = 0
    for message in messages:
        if isinstance(message['content'], list):
            for content_part in message['content']:
                if content_part.get('type') == 'text':
                    tokens += len(encoding.encode(content_part['text']))
                elif content_part.get('type') == 'image_url':
                    tokens += len(encoding.encode(content_part['image_url']['url']))
        else:
            tokens += len(encoding.encode(message['content']))
    return tokens

# Blackbox Class: Handles interaction with the external AI service
class Blackbox:
    url = "https://www.blackbox.ai"
    api_endpoint = os.getenv("EXTERNAL_API_ENDPOINT", "https://www.blackbox.ai/api/chat")
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True

    default_model = 'blackboxai'
    image_models = ['ImageGeneration']
    models = [
        default_model,
        'blackboxai-pro',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
        *image_models,
        'Niansuh',
    ]

    agentMode = {
        'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
        'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
    }
    trendingAgentMode = {
        "blackboxai": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
        'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
        'PythonAgent': {'mode': True, 'id': "Python Agent"},
        'JavaAgent': {'mode': True, 'id': "Java Agent"},
        'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
        'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
        'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
        'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
        'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
        'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
        'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
        'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
        'ReactAgent': {'mode': True, 'id': "React Agent"},
        'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
        'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
    }

    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }

    model_prefixes = {
        'gpt-4o': '@GPT-4o',
        'gemini-pro': '@Gemini-PRO',
        'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
        'PythonAgent': '@Python Agent',
        'JavaAgent': '@Java Agent',
        'JavaScriptAgent': '@JavaScript Agent',
        'HTMLAgent': '@HTML Agent',
        'GoogleCloudAgent': '@Google Cloud Agent',
        'AndroidDeveloper': '@Android Developer',
        'SwiftDeveloper': '@Swift Developer',
        'Next.jsAgent': '@Next.js Agent',
        'MongoDBAgent': '@MongoDB Agent',
        'PyTorchAgent': '@PyTorch Agent',
        'ReactAgent': '@React Agent',
        'XcodeAgent': '@Xcode Agent',
        'AngularJSAgent': '@AngularJS Agent',
        'blackboxai-pro': '@BLACKBOXAI-PRO',
        'ImageGeneration': '@Image Generation',
        'Niansuh': '@Niansuh',
    }

    model_referers = {
        "blackboxai": f"{url}/?model=blackboxai",
        "gpt-4o": f"{url}/?model=gpt-4o",
        "gemini-pro": f"{url}/?model=gemini-pro",
        "claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
    }

    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "claude-3.5-sonnet": "claude-sonnet-3.5",
        "flux": "ImageGeneration",
        "niansuh": "Niansuh",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, Any]],
        proxy: Optional[str] = None,
        image: Any = None,
        image_name: Optional[str] = None,
        webSearchMode: bool = False,
        **kwargs
    ) -> AsyncGenerator[Any, None]:
        model = cls.get_model(model)
        logger.info(f"Selected model: {model}")

        if not cls.working or model not in cls.models:
            logger.error(f"Model {model} is not working or not supported.")
            raise ModelNotWorkingException(model)
        
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "priority": "u=1, i",
            "referer": cls.model_referers.get(model, cls.url),
            "sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
        }

        if model in cls.model_prefixes:
            prefix = cls.model_prefixes[model]
            if messages and isinstance(messages[0]['content'], list):
                # Prepend prefix to the first text message
                for content_part in messages[0]['content']:
                    if content_part.get('type') == 'text' and not content_part['text'].startswith(prefix):
                        logger.debug(f"Adding prefix '{prefix}' to the first text message.")
                        content_part['text'] = f"{prefix} {content_part['text']}"
                        break
            elif messages and isinstance(messages[0]['content'], str) and not messages[0]['content'].startswith(prefix):
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"

        random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
        # Assuming the last message is from the user
        if messages:
            last_message = messages[-1]
            if isinstance(last_message['content'], list):
                for content_part in last_message['content']:
                    if content_part.get('type') == 'text':
                        content_part['role'] = 'user'
            else:
                last_message['id'] = random_id
                last_message['role'] = 'user'
        
        if image is not None:
            # Process image if required
            # This implementation assumes that image URLs are handled by the external service
            pass  # Implement as needed

        data = {
            "messages": messages,
            "id": random_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": {},
            "trendingAgentMode": {},
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": int(os.getenv("MAX_TOKENS", "4096")),
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "userSelectedModel": None,
            "webSearchMode": webSearchMode,
        }

        if model in cls.agentMode:
            data["agentMode"] = cls.agentMode[model]
        elif model in cls.trendingAgentMode:
            data["trendingAgentMode"] = cls.trendingAgentMode[model]
        elif model in cls.userSelectedModel:
            data["userSelectedModel"] = cls.userSelectedModel[model]
        logger.info(f"Sending request to {cls.api_endpoint} with data: {data}")

        timeout = ClientTimeout(total=60)  # Set an appropriate timeout
        retry_attempts = 10  # Set the number of retry attempts

        for attempt in range(retry_attempts):
            try:
                async with ClientSession(headers=headers, timeout=timeout) as session:
                    async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                        response.raise_for_status()
                        logger.info(f"Received response with status {response.status}")
                        if model == 'ImageGeneration':
                            response_text = await response.text()
                            url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                            if url_match:
                                image_url = url_match.group(0)
                                logger.info(f"Image URL found: {image_url}")
                                yield ImageResponse(image_url, alt=messages[-1]['content'])
                            else:
                                logger.error("Image URL not found in the response.")
                                raise Exception("Image URL not found in the response")
                        else:
                            async for chunk in response.content.iter_chunks():
                                if chunk:
                                    decoded_chunk = chunk.decode(errors='ignore')
                                    decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                                    if decoded_chunk.strip():
                                        yield decoded_chunk
                break  # Exit the retry loop if successful
            except ClientError as ce:
                logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=502, detail="Error communicating with the external API.")
            except asyncio.TimeoutError:
                logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=504, detail="External API request timed out.")
            except Exception as e:
                logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=500, detail=str(e))

# Pydantic Models
class TextContent(BaseModel):
    type: str = Field(..., description="Type of content, e.g., 'text'.")
    text: str = Field(..., description="The text content.")

class ImageURLContent(BaseModel):
    type: str = Field(..., description="Type of content, e.g., 'image_url'.")
    image_url: Dict[str, str] = Field(..., description="Dictionary containing the image URL.")

Content = Union[TextContent, ImageURLContent]

class Message(BaseModel):
    role: str = Field(..., description="The role of the message author.")
    content: Union[str, List[Content]] = Field(..., description="The content of the message. Can be a string or a list of content parts.")

    @validator('content', pre=True)
    def validate_content(cls, v):
        if isinstance(v, list):
            return [Content(**item) for item in v]
        elif isinstance(v, str):
            return v
        else:
            raise ValueError("Content must be either a string or a list of content parts.")

class ChatRequest(BaseModel):
    model: str = Field(..., description="ID of the model to use.")
    messages: List[Message] = Field(..., description="A list of messages comprising the conversation.")
    stream: Optional[bool] = Field(False, description="Whether to stream the response.")
    webSearchMode: Optional[bool] = Field(False, description="Whether to enable web search mode.")

class ChatCompletionChoice(BaseModel):
    index: int
    delta: Dict[str, Any]
    finish_reason: Optional[str] = None

class ChatCompletionResponse(BaseModel):
    id: str
    object: str
    created: int
    model: str
    choices: List[ChatCompletionChoice]
    usage: Optional[Dict[str, int]] = None

# Utility Function to Create Response
def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": content, "role": "assistant"},
                "finish_reason": finish_reason,
            }
        ],
        "usage": None,  # To be populated if usage metrics are available
    }

# Endpoint: Chat Completions
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
@limiter.limit("60/minute")  # Example: 60 requests per minute per IP
async def chat_completions(
    chat_request: ChatRequest,            # Renamed from 'request' to 'chat_request'
    request: Request,                     # Added 'request: Request' parameter
    api_key: str = Depends(get_api_key)
):
    logger.info(f"Received chat completions request: {chat_request}")
    try:
        # Process messages for token counting and sending to Blackbox
        processed_messages = []
        for msg in chat_request.messages:
            if isinstance(msg.content, list):
                # Convert list of content parts to a structured format
                combined_content = []
                for part in msg.content:
                    if isinstance(part, TextContent):
                        combined_content.append({"type": part.type, "text": part.text})
                    elif isinstance(part, ImageURLContent):
                        combined_content.append({"type": part.type, "image_url": part.image_url})
                processed_messages.append({"role": msg.role, "content": combined_content})
            else:
                processed_messages.append({"role": msg.role, "content": msg.content})

        prompt_tokens = count_tokens(processed_messages, chat_request.model)

        async_generator = Blackbox.create_async_generator(
            model=chat_request.model,
            messages=processed_messages,
            image=None,  # Adjust if image handling is required
            image_name=None,
            webSearchMode=chat_request.webSearchMode
        )

        if chat_request.stream:
            async def generate():
                try:
                    completion_tokens = 0
                    async for chunk in async_generator:
                        if isinstance(chunk, ImageResponse):
                            image_markdown = f"![image]({chunk.url})"
                            response_chunk = create_response(image_markdown, chat_request.model)
                            yield f"data: {json.dumps(response_chunk)}\n\n"
                            completion_tokens += len(image_markdown.split())
                        else:
                            response_chunk = create_response(chunk, chat_request.model)
                            yield f"data: {json.dumps(response_chunk)}\n\n"
                            completion_tokens += len(chunk.split())
                    
                    # Signal the end of the stream
                    yield "data: [DONE]\n\n"
                except HTTPException as he:
                    error_response = {"error": he.detail}
                    yield f"data: {json.dumps(error_response)}\n\n"
                except Exception as e:
                    logger.exception("Error during streaming response generation.")
                    error_response = {"error": str(e)}
                    yield f"data: {json.dumps(error_response)}\n\n"

            return StreamingResponse(generate(), media_type="text/event-stream")
        else:
            response_content = ""
            completion_tokens = 0
            async for chunk in async_generator:
                if isinstance(chunk, ImageResponse):
                    response_content += f"![image]({chunk.url})\n"
                    completion_tokens += len(f"![image]({chunk.url})\n".split())
                else:
                    response_content += chunk
                    completion_tokens += len(chunk.split())

            total_tokens = prompt_tokens + completion_tokens

            logger.info("Completed non-streaming response generation.")
            return ChatCompletionResponse(
                id=f"chatcmpl-{uuid.uuid4()}",
                object="chat.completion",
                created=int(datetime.now().timestamp()),
                model=chat_request.model,
                choices=[
                    ChatCompletionChoice(
                        index=0,
                        delta={"content": response_content, "role": "assistant"},
                        finish_reason="stop"
                    )
                ],
                usage={
                    "prompt_tokens": prompt_tokens,
                    "completion_tokens": completion_tokens,
                    "total_tokens": total_tokens
                }
            )
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail}")
        raise he
    except Exception as e:
        logger.exception("An unexpected error occurred while processing the chat completions request.")
        raise HTTPException(status_code=500, detail=str(e))

# Endpoint: List Models
@app.get("/v1/models", response_model=Dict[str, List[Dict[str, str]]])
@limiter.limit("60/minute")
async def get_models(
    request: Request,                      # Ensure 'request: Request' parameter is present
    api_key: str = Depends(get_api_key)
):
    logger.info("Fetching available models.")
    return {"data": [{"id": model} for model in Blackbox.models]}

# Endpoint: Model Status
@app.get("/v1/models/{model}/status", response_model=Dict[str, str])
@limiter.limit("60/minute")
async def model_status(
    model: str,
    request: Request,                      # Ensure 'request: Request' parameter is present
    api_key: str = Depends(get_api_key)
):
    """Check if a specific model is available."""
    if model in Blackbox.models:
        return {"model": model, "status": "available"}
    elif model in Blackbox.model_aliases:
        actual_model = Blackbox.model_aliases[model]
        return {"model": actual_model, "status": "available via alias"}
    else:
        raise HTTPException(status_code=404, detail="Model not found")

# Endpoint: Health Check
@app.get("/v1/health", response_model=Dict[str, str])
@limiter.limit("60/minute")
async def health_check(
    request: Request                       # Ensure 'request: Request' parameter is present
):
    """Health check endpoint to verify the service is running."""
    return {"status": "ok"}

# Run the application
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)