File size: 23,800 Bytes
3908754 9cf0d3b 34226fa b27d93f 1d3da36 18d089c 3908754 6b5328d 2722c48 3908754 628f747 18d089c 1d3da36 3908754 94e6f25 3908754 34226fa 18d089c 34226fa 3908754 7937c8d a1ae61d 628f747 7937c8d 3908754 6b5328d 3908754 6b5328d 3908754 7937c8d 3908754 18d089c 628f747 3908754 8a3edf7 a1ae61d 8a3edf7 18d089c 80dc124 18d089c 80dc124 4b6f3a0 80dc124 18d089c 80dc124 18d089c 80dc124 8a3edf7 18d089c 8a3edf7 18d089c 8a3edf7 18d089c 8a3edf7 3908754 8a3edf7 3908754 18d089c 3908754 18d089c 3908754 8a3edf7 18d089c 8a3edf7 a1ae61d 7937c8d a1ae61d 8a3edf7 a1ae61d 1571fac 6b5328d 1571fac 18d089c 1571fac 18d089c 1571fac 18d089c 1571fac 18d089c bf65fef 1571fac 18d089c 1571fac 18d089c 1571fac 18d089c 1571fac 18d089c 1571fac 80dc124 18d089c 6b5328d 1571fac 6b5328d 18d089c 6b5328d 18d089c 6b5328d 18d089c 3908754 18d089c 80dc124 18d089c 400d142 18d089c 1d3da36 18d089c 1d3da36 6b5328d 18d089c 3908754 18d089c 3908754 18d089c 628f747 3908754 6b5328d 7937c8d 3908754 6b5328d 7937c8d 3908754 7937c8d 3908754 2722c48 3908754 2722c48 3908754 80a3863 3908754 94e6f25 2edde86 94e6f25 2edde86 34226fa 6b5328d 3908754 b27d93f 2edde86 6b5328d 3908754 18d089c 2edde86 34226fa 45670a8 2edde86 18d089c 3908754 18d089c 2edde86 3908754 18d089c 2edde86 3908754 18d089c 3908754 2722c48 1cfe11e 18d089c 3908754 1cfe11e 18d089c 3908754 2722c48 18d089c 3908754 2edde86 3908754 18d089c 3908754 18d089c 34226fa 3908754 94e6f25 3908754 94e6f25 2edde86 94e6f25 18d089c 3908754 94e6f25 3908754 94e6f25 2edde86 94e6f25 18d089c 3908754 94e6f25 3908754 2edde86 3908754 18d089c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request, Depends, Header, status
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field, validator
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
from datetime import datetime
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
import tiktoken
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(title="OpenAI-Compatible API")
# Configure CORS (adjust origins as needed)
origins = [
"*", # Allow all origins; replace with specific origins in production
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize Rate Limiter from environment variable
RATE_LIMIT = os.getenv("RATE_LIMIT", "60/minute") # Default to 60 requests per minute
limiter = Limiter(key_func=get_remote_address, default_limits=[RATE_LIMIT])
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
# API Key Authentication
API_KEYS = set(api_key.strip() for api_key in os.getenv("API_KEYS", "").split(",") if api_key.strip())
async def get_api_key(authorization: Optional[str] = Header(None)):
"""
Dependency to validate API Key from the Authorization header.
"""
if authorization is None:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Authorization header missing",
headers={"WWW-Authenticate": "Bearer"},
)
parts = authorization.split()
if parts[0].lower() != "bearer" or len(parts) != 2:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid authorization header format",
headers={"WWW-Authenticate": "Bearer"},
)
token = parts[1]
if token not in API_KEYS:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API Key",
headers={"WWW-Authenticate": "Bearer"},
)
return token
# Custom exception for model not working
class ModelNotWorkingException(Exception):
def __init__(self, model: str):
self.model = model
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
super().__init__(self.message)
# Mock implementations for ImageResponse and to_data_uri (custom functionality)
class ImageResponse:
def __init__(self, url: str, alt: str):
self.url = url
self.alt = alt
def to_data_uri(image: Any) -> str:
return "data:image/png;base64,..." # Replace with actual base64 data if needed
# Token Counting using tiktoken
def count_tokens(messages: List[Dict[str, Any]], model: str) -> int:
"""
Counts the number of tokens in the messages using tiktoken.
Adjust the encoding based on the model.
"""
try:
encoding = tiktoken.get_encoding("cl100k_base") # Adjust encoding as per model
except:
encoding = tiktoken.get_encoding("cl100k_base") # Default encoding
tokens = 0
for message in messages:
if isinstance(message['content'], list):
for content_part in message['content']:
if content_part.get('type') == 'text':
tokens += len(encoding.encode(content_part['text']))
elif content_part.get('type') == 'image_url':
tokens += len(encoding.encode(content_part['image_url']['url']))
else:
tokens += len(encoding.encode(message['content']))
return tokens
# Blackbox Class: Handles interaction with the external AI service
class Blackbox:
url = "https://www.blackbox.ai"
api_endpoint = os.getenv("EXTERNAL_API_ENDPOINT", "https://www.blackbox.ai/api/chat")
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
image_models = ['ImageGeneration']
models = [
default_model,
'blackboxai-pro',
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
*image_models,
'Niansuh',
]
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
}
trendingAgentMode = {
"blackboxai": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'PythonAgent': {'mode': True, 'id': "Python Agent"},
'JavaAgent': {'mode': True, 'id': "Java Agent"},
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
'ReactAgent': {'mode': True, 'id': "React Agent"},
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
'PythonAgent': '@Python Agent',
'JavaAgent': '@Java Agent',
'JavaScriptAgent': '@JavaScript Agent',
'HTMLAgent': '@HTML Agent',
'GoogleCloudAgent': '@Google Cloud Agent',
'AndroidDeveloper': '@Android Developer',
'SwiftDeveloper': '@Swift Developer',
'Next.jsAgent': '@Next.js Agent',
'MongoDBAgent': '@MongoDB Agent',
'PyTorchAgent': '@PyTorch Agent',
'ReactAgent': '@React Agent',
'XcodeAgent': '@Xcode Agent',
'AngularJSAgent': '@AngularJS Agent',
'blackboxai-pro': '@BLACKBOXAI-PRO',
'ImageGeneration': '@Image Generation',
'Niansuh': '@Niansuh',
}
model_referers = {
"blackboxai": f"{url}/?model=blackboxai",
"gpt-4o": f"{url}/?model=gpt-4o",
"gemini-pro": f"{url}/?model=gemini-pro",
"claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "ImageGeneration",
"niansuh": "Niansuh",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.userSelectedModel:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: List[Dict[str, Any]],
proxy: Optional[str] = None,
image: Any = None,
image_name: Optional[str] = None,
webSearchMode: bool = False,
**kwargs
) -> AsyncGenerator[Any, None]:
model = cls.get_model(model)
logger.info(f"Selected model: {model}")
if not cls.working or model not in cls.models:
logger.error(f"Model {model} is not working or not supported.")
raise ModelNotWorkingException(model)
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": cls.url,
"pragma": "no-cache",
"priority": "u=1, i",
"referer": cls.model_referers.get(model, cls.url),
"sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
}
if model in cls.model_prefixes:
prefix = cls.model_prefixes[model]
if messages and isinstance(messages[0]['content'], list):
# Prepend prefix to the first text message
for content_part in messages[0]['content']:
if content_part.get('type') == 'text' and not content_part['text'].startswith(prefix):
logger.debug(f"Adding prefix '{prefix}' to the first text message.")
content_part['text'] = f"{prefix} {content_part['text']}"
break
elif messages and isinstance(messages[0]['content'], str) and not messages[0]['content'].startswith(prefix):
messages[0]['content'] = f"{prefix} {messages[0]['content']}"
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
# Assuming the last message is from the user
if messages:
last_message = messages[-1]
if isinstance(last_message['content'], list):
for content_part in last_message['content']:
if content_part.get('type') == 'text':
content_part['role'] = 'user'
else:
last_message['id'] = random_id
last_message['role'] = 'user'
if image is not None:
# Process image if required
# This implementation assumes that image URLs are handled by the external service
pass # Implement as needed
data = {
"messages": messages,
"id": random_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": {},
"trendingAgentMode": {},
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": int(os.getenv("MAX_TOKENS", "4096")),
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"userSelectedModel": None,
"webSearchMode": webSearchMode,
}
if model in cls.agentMode:
data["agentMode"] = cls.agentMode[model]
elif model in cls.trendingAgentMode:
data["trendingAgentMode"] = cls.trendingAgentMode[model]
elif model in cls.userSelectedModel:
data["userSelectedModel"] = cls.userSelectedModel[model]
logger.info(f"Sending request to {cls.api_endpoint} with data: {data}")
timeout = ClientTimeout(total=60) # Set an appropriate timeout
retry_attempts = 10 # Set the number of retry attempts
for attempt in range(retry_attempts):
try:
async with ClientSession(headers=headers, timeout=timeout) as session:
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
logger.info(f"Received response with status {response.status}")
if model == 'ImageGeneration':
response_text = await response.text()
url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
if url_match:
image_url = url_match.group(0)
logger.info(f"Image URL found: {image_url}")
yield ImageResponse(image_url, alt=messages[-1]['content'])
else:
logger.error("Image URL not found in the response.")
raise Exception("Image URL not found in the response")
else:
async for chunk in response.content.iter_chunks():
if chunk:
decoded_chunk = chunk.decode(errors='ignore')
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
if decoded_chunk.strip():
yield decoded_chunk
break # Exit the retry loop if successful
except ClientError as ce:
logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=502, detail="Error communicating with the external API.")
except asyncio.TimeoutError:
logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=504, detail="External API request timed out.")
except Exception as e:
logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
if attempt == retry_attempts - 1:
raise HTTPException(status_code=500, detail=str(e))
# Pydantic Models
class TextContent(BaseModel):
type: str = Field(..., description="Type of content, e.g., 'text'.")
text: str = Field(..., description="The text content.")
class ImageURLContent(BaseModel):
type: str = Field(..., description="Type of content, e.g., 'image_url'.")
image_url: Dict[str, str] = Field(..., description="Dictionary containing the image URL.")
Content = Union[TextContent, ImageURLContent]
class Message(BaseModel):
role: str = Field(..., description="The role of the message author.")
content: Union[str, List[Content]] = Field(..., description="The content of the message. Can be a string or a list of content parts.")
@validator('content', pre=True)
def validate_content(cls, v):
if isinstance(v, list):
return [Content(**item) for item in v]
elif isinstance(v, str):
return v
else:
raise ValueError("Content must be either a string or a list of content parts.")
class ChatRequest(BaseModel):
model: str = Field(..., description="ID of the model to use.")
messages: List[Message] = Field(..., description="A list of messages comprising the conversation.")
stream: Optional[bool] = Field(False, description="Whether to stream the response.")
webSearchMode: Optional[bool] = Field(False, description="Whether to enable web search mode.")
class ChatCompletionChoice(BaseModel):
index: int
delta: Dict[str, Any]
finish_reason: Optional[str] = None
class ChatCompletionResponse(BaseModel):
id: str
object: str
created: int
model: str
choices: List[ChatCompletionChoice]
usage: Optional[Dict[str, int]] = None
# Utility Function to Create Response
def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content, "role": "assistant"},
"finish_reason": finish_reason,
}
],
"usage": None, # To be populated if usage metrics are available
}
# Endpoint: Chat Completions
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
@limiter.limit("60/minute") # Example: 60 requests per minute per IP
async def chat_completions(
chat_request: ChatRequest, # Renamed from 'request' to 'chat_request'
request: Request, # Added 'request: Request' parameter
api_key: str = Depends(get_api_key)
):
logger.info(f"Received chat completions request: {chat_request}")
try:
# Process messages for token counting and sending to Blackbox
processed_messages = []
for msg in chat_request.messages:
if isinstance(msg.content, list):
# Convert list of content parts to a structured format
combined_content = []
for part in msg.content:
if isinstance(part, TextContent):
combined_content.append({"type": part.type, "text": part.text})
elif isinstance(part, ImageURLContent):
combined_content.append({"type": part.type, "image_url": part.image_url})
processed_messages.append({"role": msg.role, "content": combined_content})
else:
processed_messages.append({"role": msg.role, "content": msg.content})
prompt_tokens = count_tokens(processed_messages, chat_request.model)
async_generator = Blackbox.create_async_generator(
model=chat_request.model,
messages=processed_messages,
image=None, # Adjust if image handling is required
image_name=None,
webSearchMode=chat_request.webSearchMode
)
if chat_request.stream:
async def generate():
try:
completion_tokens = 0
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
image_markdown = f""
response_chunk = create_response(image_markdown, chat_request.model)
yield f"data: {json.dumps(response_chunk)}\n\n"
completion_tokens += len(image_markdown.split())
else:
response_chunk = create_response(chunk, chat_request.model)
yield f"data: {json.dumps(response_chunk)}\n\n"
completion_tokens += len(chunk.split())
# Signal the end of the stream
yield "data: [DONE]\n\n"
except HTTPException as he:
error_response = {"error": he.detail}
yield f"data: {json.dumps(error_response)}\n\n"
except Exception as e:
logger.exception("Error during streaming response generation.")
error_response = {"error": str(e)}
yield f"data: {json.dumps(error_response)}\n\n"
return StreamingResponse(generate(), media_type="text/event-stream")
else:
response_content = ""
completion_tokens = 0
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
response_content += f"\n"
completion_tokens += len(f"\n".split())
else:
response_content += chunk
completion_tokens += len(chunk.split())
total_tokens = prompt_tokens + completion_tokens
logger.info("Completed non-streaming response generation.")
return ChatCompletionResponse(
id=f"chatcmpl-{uuid.uuid4()}",
object="chat.completion",
created=int(datetime.now().timestamp()),
model=chat_request.model,
choices=[
ChatCompletionChoice(
index=0,
delta={"content": response_content, "role": "assistant"},
finish_reason="stop"
)
],
usage={
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens
}
)
except ModelNotWorkingException as e:
logger.warning(f"Model not working: {e}")
raise HTTPException(status_code=503, detail=str(e))
except HTTPException as he:
logger.warning(f"HTTPException: {he.detail}")
raise he
except Exception as e:
logger.exception("An unexpected error occurred while processing the chat completions request.")
raise HTTPException(status_code=500, detail=str(e))
# Endpoint: List Models
@app.get("/v1/models", response_model=Dict[str, List[Dict[str, str]]])
@limiter.limit("60/minute")
async def get_models(
request: Request, # Ensure 'request: Request' parameter is present
api_key: str = Depends(get_api_key)
):
logger.info("Fetching available models.")
return {"data": [{"id": model} for model in Blackbox.models]}
# Endpoint: Model Status
@app.get("/v1/models/{model}/status", response_model=Dict[str, str])
@limiter.limit("60/minute")
async def model_status(
model: str,
request: Request, # Ensure 'request: Request' parameter is present
api_key: str = Depends(get_api_key)
):
"""Check if a specific model is available."""
if model in Blackbox.models:
return {"model": model, "status": "available"}
elif model in Blackbox.model_aliases:
actual_model = Blackbox.model_aliases[model]
return {"model": actual_model, "status": "available via alias"}
else:
raise HTTPException(status_code=404, detail="Model not found")
# Endpoint: Health Check
@app.get("/v1/health", response_model=Dict[str, str])
@limiter.limit("60/minute")
async def health_check(
request: Request # Ensure 'request: Request' parameter is present
):
"""Health check endpoint to verify the service is running."""
return {"status": "ok"}
# Run the application
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|