File size: 22,603 Bytes
e97905c
9cf0d3b
34226fa
b27d93f
1d3da36
18d089c
e97905c
 
42492be
4efca8f
36aebd6
e97905c
 
4efca8f
479563b
e97905c
628f747
18d089c
 
 
 
dd3e05b
18d089c
1d3da36
 
e97905c
 
4efca8f
e97905c
 
4efca8f
 
e97905c
4efca8f
 
e97905c
4efca8f
 
e97905c
4efca8f
e97905c
4efca8f
e97905c
4efca8f
 
 
 
e97905c
34226fa
 
 
 
18d089c
34226fa
 
e97905c
7937c8d
e97905c
 
a1ae61d
628f747
e97905c
 
7937c8d
18d089c
521a764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efca8f
521a764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e97905c
521a764
 
 
 
a1ae61d
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f747
479563b
 
6b5328d
4efca8f
 
 
 
 
 
 
 
7937c8d
479563b
 
7937c8d
4efca8f
7937c8d
479563b
4efca8f
 
 
479563b
4efca8f
 
 
 
 
 
 
 
2722c48
 
4efca8f
dd3e05b
2722c48
 
 
 
4efca8f
 
 
 
 
2722c48
 
4efca8f
80a3863
 
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fedb8b
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fedb8b
4efca8f
34226fa
4efca8f
 
 
 
 
 
 
34226fa
45670a8
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479563b
18d089c
4efca8f
18d089c
4efca8f
 
 
 
18d089c
4efca8f
 
 
 
 
 
 
 
 
18d089c
4efca8f
 
 
 
18d089c
 
4efca8f
 
18d089c
 
 
2722c48
4efca8f
18d089c
4efca8f
 
 
 
 
 
 
479563b
4efca8f
18d089c
 
 
 
4efca8f
18d089c
34226fa
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36aebd6
18d089c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import os
import re
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, AsyncGenerator

from datetime import datetime

from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import StreamingResponse
from pydantic import BaseModel

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',')  # Comma-separated API keys
RATE_LIMIT_PER_MINUTE = int(os.getenv('RATE_LIMIT_PER_MINUTE', '60'))  # Requests per minute per IP

if not API_KEYS or API_KEYS == ['']:
    logger.error("No API keys found. Please set the API_KEYS environment variable.")
    raise Exception("API_KEYS environment variable not set.")

# Simple in-memory rate limiter per IP
rate_limit_store_ip = defaultdict(lambda: {"count": 0, "timestamp": time.time()})

async def rate_limiter(request: Request):
    client_host = request.client.host
    current_time = time.time()
    window_start = rate_limit_store_ip[client_host]["timestamp"]
    if current_time - window_start > 60:
        rate_limit_store_ip[client_host] = {"count": 1, "timestamp": current_time}
    else:
        if rate_limit_store_ip[client_host]["count"] >= RATE_LIMIT_PER_MINUTE:
            logger.warning(f"Rate limit exceeded for IP: {client_host}")
            raise HTTPException(status_code=429, detail='Rate limit exceeded.')
        rate_limit_store_ip[client_host]["count"] += 1

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    return "data:image/png;base64,..."  # Replace with actual base64 data

class Blackbox:
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True

    default_model = 'blackboxai'
    image_models = ['ImageGeneration']
    models = [
        default_model,
        'blackboxai-pro',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
        *image_models,
        'Niansuh',
    ]

    agentMode = {
        'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
        'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
    }
    trendingAgentMode = {
        "blackboxai": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
        'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
        'PythonAgent': {'mode': True, 'id': "Python Agent"},
        'JavaAgent': {'mode': True, 'id': "Java Agent"},
        'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
        'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
        'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
        'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
        'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
        'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
        'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
        'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
        'ReactAgent': {'mode': True, 'id': "React Agent"},
        'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
        'AngularJSAgent': {'mode': True, 'id": "AngularJS Agent"},
    }

    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }

    model_prefixes = {
        'gpt-4o': '@GPT-4o',
        'gemini-pro': '@Gemini-PRO',
        'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
        'PythonAgent': '@Python Agent',
        'JavaAgent': '@Java Agent',
        'JavaScriptAgent': '@JavaScript Agent',
        'HTMLAgent': '@HTML Agent',
        'GoogleCloudAgent': '@Google Cloud Agent',
        'AndroidDeveloper': '@Android Developer',
        'SwiftDeveloper': '@Swift Developer',
        'Next.jsAgent': '@Next.js Agent',
        'MongoDBAgent': '@MongoDB Agent',
        'PyTorchAgent': '@PyTorch Agent',
        'ReactAgent': '@React Agent',
        'XcodeAgent': '@Xcode Agent',
        'AngularJSAgent': '@AngularJS Agent',
        'blackboxai-pro': '@BLACKBOXAI-PRO',
        'ImageGeneration': '@Image Generation',
        'Niansuh': '@Niansuh',
    }

    model_referers = {
        "blackboxai": f"{url}/?model=blackboxai",
        "gpt-4o": f"{url}/?model=gpt-4o",
        "gemini-pro": f"{url}/?model=gemini-pro",
        "claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
    }

    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "claude-3.5-sonnet": "claude-sonnet-3.5",
        "flux": "ImageGeneration",
        "niansuh": "Niansuh",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        image: Any = None,
        image_name: Optional[str] = None,
        webSearchMode: bool = False,
        **kwargs
    ) -> AsyncGenerator[Any, None]:
        model = cls.get_model(model)
        logger.info(f"Selected model: {model}")

        if not cls.working or model not in cls.models:
            logger.error(f"Model {model} is not working or not supported.")
            raise ModelNotWorkingException(model)

        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "priority": "u=1, i",
            "referer": cls.model_referers.get(model, cls.url),
            "sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64)",
        }

        if model in cls.model_prefixes:
            prefix = cls.model_prefixes[model]
            if not messages[0]['content'].startswith(prefix):
                logger.debug(f"Adding prefix '{prefix}' to the first message.")
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"

        random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
        messages[-1]['id'] = random_id
        messages[-1]['role'] = 'user'

        # Don't log the full message content for privacy
        logger.debug(f"Generated message ID: {random_id} for model: {model}")

        if image is not None:
            messages[-1]['data'] = {
                'fileText': '',
                'imageBase64': to_data_uri(image),
                'title': image_name
            }
            messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
            logger.debug("Image data added to the message.")

        data = {
            "messages": messages,
            "id": random_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": {},
            "trendingAgentMode": {},
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 99999999,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "userSelectedModel": None,
            "webSearchMode": webSearchMode,
        }

        if model in cls.agentMode:
            data["agentMode"] = cls.agentMode[model]
        elif model in cls.trendingAgentMode:
            data["trendingAgentMode"] = cls.trendingAgentMode[model]
        elif model in cls.userSelectedModel:
            data["userSelectedModel"] = cls.userSelectedModel[model]
        logger.info(f"Sending request to {cls.api_endpoint} with data (excluding messages).")

        timeout = ClientTimeout(total=30)  # Reduced timeout for faster response
        retry_attempts = 3  # Reduced retry attempts for faster failure handling

        for attempt in range(retry_attempts):
            try:
                async with ClientSession(headers=headers, timeout=timeout) as session:
                    async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                        response.raise_for_status()
                        logger.info(f"Received response with status {response.status}")
                        if model == 'ImageGeneration':
                            response_text = await response.text()
                            url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                            if url_match:
                                image_url = url_match.group(0)
                                logger.info(f"Image URL found.")
                                yield ImageResponse(image_url, alt=messages[-1]['content'])
                            else:
                                logger.error("Image URL not found in the response.")
                                raise Exception("Image URL not found in the response")
                        else:
                            full_response = ""
                            search_results_json = ""
                            try:
                                async for chunk, _ in response.content.iter_chunks():
                                    if chunk:
                                        decoded_chunk = chunk.decode(errors='ignore')
                                        decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                                        if decoded_chunk.strip():
                                            if '$~~~$' in decoded_chunk:
                                                search_results_json += decoded_chunk
                                            else:
                                                full_response += decoded_chunk
                                                yield decoded_chunk
                                logger.info("Finished streaming response chunks.")
                            except Exception as e:
                                logger.exception("Error while iterating over response chunks.")
                                raise e
                            if data["webSearchMode"] and search_results_json:
                                match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
                                if match:
                                    try:
                                        search_results = json.loads(match.group(1))
                                        formatted_results = "\n\n**Sources:**\n"
                                        for i, result in enumerate(search_results[:5], 1):
                                            formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
                                        logger.info("Formatted search results.")
                                        yield formatted_results
                                    except json.JSONDecodeError as je:
                                        logger.error("Failed to parse search results JSON.")
                                        raise je
                break  # Exit the retry loop if successful
            except ClientError as ce:
                logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=502, detail="Error communicating with the external API.")
            except asyncio.TimeoutError:
                logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=504, detail="External API request timed out.")
            except Exception as e:
                logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=500, detail=str(e))

# FastAPI app setup
app = FastAPI()

# Implement per-IP rate limiting middleware
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
    await rate_limiter(request)
    response = await call_next(request)
    return response

# Pydantic models for OpenAI API
class Message(BaseModel):
    role: str
    content: str

class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    stream: Optional[bool] = False
    stop: Optional[Any] = None  # Can be a string or list of strings
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None

def create_chat_completion_response(content: str, model: str, usage: Dict[str, int]) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": content
                },
                "finish_reason": "stop"
            }
        ],
        "usage": usage
    }

def create_stream_response_chunk(content: str, role: Optional[str] = None, finish_reason: Optional[str] = None):
    delta = {}
    if role:
        delta['role'] = role
    if content:
        delta['content'] = content
    return {
        "object": "chat.completion.chunk",
        "created": int(datetime.now().timestamp()),
        "model": "",  # Model name can be added if necessary
        "choices": [
            {
                "delta": delta,
                "index": 0,
                "finish_reason": finish_reason
            }
        ]
    }

@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest, authorization: str = Header(None)):
    # Verify API key
    if not authorization or not authorization.startswith('Bearer '):
        logger.warning("Invalid authorization header format.")
        raise HTTPException(status_code=401, detail='Invalid authorization header format.')
    api_key = authorization[7:]
    if api_key not in API_KEYS:
        logger.warning(f"Invalid API key attempted: {api_key}")
        raise HTTPException(status_code=401, detail='Invalid API key.')

    logger.info(f"Received chat completion request for model: {request.model}")

    # Validate model
    if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
        logger.warning(f"Attempt to use unavailable model: {request.model}")
        raise HTTPException(status_code=400, detail="The model is not available.")

    # Process the request
    try:
        # Convert messages to dicts
        messages = [msg.dict() for msg in request.messages]

        # Check if the user is requesting image generation
        image_generation_requested = any(
            re.search(r'\b(generate|create|draw)\b.*\b(image|picture|art)\b', msg['content'], re.IGNORECASE)
            for msg in messages if msg['role'] == 'user'
        )

        if image_generation_requested:
            model = 'ImageGeneration'
            # For image generation, use the last message as prompt
            prompt = messages[-1]['content']
            # Build messages for the Blackbox.create_async_generator
            messages = [{"role": "user", "content": prompt}]
            async_generator = Blackbox.create_async_generator(
                model=model,
                messages=messages,
                image=None,
                image_name=None,
                webSearchMode=False
            )

            # Collect images
            images = []
            count = 0
            async for response in async_generator:
                if isinstance(response, ImageResponse):
                    images.append(response.url)
                    count += 1
                    if count >= request.n:
                        break

            # Build response content with image URLs
            response_content = "\n".join(f"![Generated Image]({url})" for url in images)
            completion_tokens = len(response_content.split())
        else:
            # Use the requested model
            async_generator = Blackbox.create_async_generator(
                model=request.model,
                messages=messages,
                image=None,
                image_name=None,
                webSearchMode=False
            )
            # Usage tracking
            completion_tokens = 0  # Will be updated as we process the response

        prompt_tokens = sum(len(msg['content'].split()) for msg in messages)

        if request.stream:
            async def generate():
                nonlocal completion_tokens
                try:
                    # Initial delta with role
                    initial_chunk = create_stream_response_chunk(content=None, role="assistant")
                    yield f"data: {json.dumps(initial_chunk)}\n\n"

                    async for chunk in async_generator:
                        if isinstance(chunk, str):
                            completion_tokens += len(chunk.split())
                            response_chunk = create_stream_response_chunk(content=chunk)
                            yield f"data: {json.dumps(response_chunk)}\n\n"
                        elif isinstance(chunk, ImageResponse):
                            content = f"![Generated Image]({chunk.url})"
                            completion_tokens += len(content.split())
                            response_chunk = create_stream_response_chunk(content=content)
                            yield f"data: {json.dumps(response_chunk)}\n\n"
                        else:
                            pass  # Handle other types if necessary
                    # Finish reason
                    final_chunk = create_stream_response_chunk(content=None, finish_reason="stop")
                    yield f"data: {json.dumps(final_chunk)}\n\n"
                    yield "data: [DONE]\n\n"
                except Exception as e:
                    logger.exception("Error during streaming response generation.")
                    yield f"data: {json.dumps({'error': str(e)})}\n\n"
            return StreamingResponse(generate(), media_type="text/event-stream")
        else:
            response_content = ""
            async for chunk in async_generator:
                if isinstance(chunk, str):
                    response_content += chunk
                elif isinstance(chunk, ImageResponse):
                    response_content += f"![Generated Image]({chunk.url})\n"
            completion_tokens = len(response_content.split())
            usage = {
                "prompt_tokens": prompt_tokens,
                "completion_tokens": completion_tokens,
                "total_tokens": prompt_tokens + completion_tokens
            }
            return create_chat_completion_response(response_content, request.model, usage)
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e}")
        raise HTTPException(status_code=503, detail=str(e))
    except Exception as e:
        logger.exception("An unexpected error occurred while processing the chat completions request.")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/v1/models")
async def get_models(authorization: str = Header(None)):
    # Verify API key
    if not authorization or not authorization.startswith('Bearer '):
        logger.warning("Invalid authorization header format.")
        raise HTTPException(status_code=401, detail='Invalid authorization header format.')
    api_key = authorization[7:]
    if api_key not in API_KEYS:
        logger.warning(f"Invalid API key attempted: {api_key}")
        raise HTTPException(status_code=401, detail='Invalid API key.')

    logger.info("Fetching available models.")
    # Return models in OpenAI format
    models_data = [{"id": model, "object": "model", "owned_by": "organization-owner", "permission": []} for model in Blackbox.models]
    return {"data": models_data, "object": "list"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)