File size: 25,569 Bytes
bd1b497
e97905c
9cf0d3b
db33061
 
34226fa
b27d93f
1d3da36
18d089c
e97905c
bd1b497
e97905c
db33061
36aebd6
e97905c
bd1b497
 
 
 
4252624
 
e97905c
628f747
bd1b497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432ff41
 
 
 
 
 
 
 
 
bd1b497
 
 
 
 
 
 
18d089c
bd1b497
 
 
 
 
 
 
 
 
 
 
18d089c
bd1b497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432ff41
7937c8d
e97905c
 
a1ae61d
628f747
e97905c
 
7937c8d
18d089c
521a764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfd9e7
bd1b497
3cfd9e7
bd1b497
3cfd9e7
 
521a764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ac543
521a764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ace20c
521a764
 
3cfd9e7
e97905c
3cfd9e7
521a764
 
3cfd9e7
a1ae61d
4efca8f
 
 
 
 
 
 
 
 
 
 
 
3cfd9e7
c003de6
3cfd9e7
 
4efca8f
 
 
c003de6
4efca8f
db33061
4efca8f
 
 
 
 
 
 
 
 
c003de6
4efca8f
 
 
 
 
c003de6
4efca8f
 
 
 
 
 
 
db33061
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db33061
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db33061
 
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c003de6
4efca8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c003de6
4efca8f
 
 
c003de6
4efca8f
 
 
 
628f747
bd1b497
 
db33061
 
8fedb8b
432ff41
4efca8f
34226fa
db33061
 
432ff41
c003de6
db33061
 
 
 
 
 
 
 
34226fa
45670a8
479563b
18d089c
 
 
db33061
 
 
bd1b497
 
 
 
 
 
 
 
18d089c
db33061
 
 
 
18d089c
db33061
 
 
18d089c
4efca8f
db33061
 
 
18d089c
 
 
2722c48
db33061
 
bd1b497
 
 
 
 
 
 
 
db33061
18d089c
db33061
432ff41
db33061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479563b
18d089c
432ff41
18d089c
db33061
432ff41
db33061
18d089c
4efca8f
18d089c
34226fa
4a435c4
 
8ace20c
 
 
4252624
 
8ace20c
3cfd9e7
4a435c4
432ff41
db33061
 
 
c003de6
 
432ff41
db33061
 
3cfd9e7
4a435c4
432ff41
db33061
 
3cfd9e7
db33061
 
 
432ff41
db33061
 
 
 
 
bd1b497
db33061
 
 
 
 
 
 
 
 
 
 
36aebd6
3cfd9e7
 
 
 
 
4a435c4
3cfd9e7
 
432ff41
3cfd9e7
 
18d089c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# main.py
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
import contextvars
from collections import defaultdict
from typing import List, Dict, Any, Optional, AsyncGenerator, Union
from datetime import datetime

from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
from pydantic import BaseModel

from sqlalchemy.orm import Session

from aiohttp import ClientSession, ClientTimeout, ClientError

from database import SessionLocal, engine, get_db
from models import Base, Image, Log

from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

# Create all tables
Base.metadata.create_all(bind=engine)

# Define a context variable for client_ip
client_ip_var = contextvars.ContextVar("client_ip", default="N/A")

# Custom logging filter to inject client_ip from context variable
class ContextFilter(logging.Filter):
    def filter(self, record):
        record.client_ip = client_ip_var.get()
        return True

# Custom logging formatter to handle missing client_ip
class SafeFormatter(logging.Formatter):
    def format(self, record):
        if not hasattr(record, 'client_ip'):
            record.client_ip = 'N/A'
        return super().format(record)

# Configure logging
logger = logging.getLogger("main")  # Use a specific logger name if needed
logger.setLevel(logging.INFO)

# Create handlers
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)

# Create and set the custom formatter
formatter = SafeFormatter(
    fmt="%(asctime)s [%(levelname)s] %(name)s [IP: %(client_ip)s]: %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S"
)
console_handler.setFormatter(formatter)

# Add the custom filter to the console handler
console_handler.addFilter(ContextFilter())

# Add handlers to the logger
logger.addHandler(console_handler)

# Initialize the limiter with slowapi
limiter = Limiter(key_func=get_remote_address, default_limits=["60/minute"])
app = FastAPI()

# Register the rate limit exceeded handler
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)

# Add SlowAPI middleware
app.add_middleware(SlowAPIMiddleware)

from logging import Handler

class DBLogHandler(Handler):
    def __init__(self, db: Session):
        super().__init__()
        self.db = db

    def emit(self, record):
        log_entry = Log(
            level=record.levelname,
            message=record.getMessage(),
            client_ip=getattr(record, 'client_ip', None)
        )
        try:
            self.db.add(log_entry)
            self.db.commit()
        except Exception as e:
            # Handle exceptions (e.g., rollback)
            self.db.rollback()
            print(f"Failed to log to database: {e}")

# Dependency to add DBLogHandler
async def get_db_log_handler(request: Request):
    db = next(get_db())
    db_log_handler = DBLogHandler(db)
    logger.addHandler(db_log_handler)
    try:
        yield
    finally:
        logger.removeHandler(db_log_handler)
        db.close()

@app.middleware("http")
async def security_middleware(request: Request, call_next):
    client_ip = request.client.host
    # Set the client_ip in the context variable
    client_ip_var.set(client_ip)
    
    # Enforce that POST requests to sensitive endpoints must have a valid Content-Type
    if request.method == "POST" and request.url.path == "/v1/chat/completions":
        content_type = request.headers.get("Content-Type")
        if content_type != "application/json":
            logger.warning("Invalid Content-Type for /v1/chat/completions")
            return JSONResponse(
                status_code=400,
                content={
                    "error": {
                        "message": "Content-Type must be application/json",
                        "type": "invalid_request_error",
                        "param": None,
                        "code": None
                    }
                },
            )
    
    # Log the incoming request
    logger.info(f"Incoming request: {request.method} {request.url.path}")
    
    response = await call_next(request)
    
    # Log the response status
    logger.info(f"Response status: {response.status_code}")
    
    return response

class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    stream: Optional[bool] = False
    stop: Optional[Union[str, List[str]]] = None
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None
    webSearchMode: Optional[bool] = False  # Custom parameter

def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "delta": {"content": content, "role": "assistant"},
                "finish_reason": finish_reason,
            }
        ],
        "usage": None,
    }

class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    return "data:image/png;base64,..."  # Replace with actual base64 data

class Blackbox:
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True

    default_model = 'blackboxai'
    image_models = ['ImageGeneration']
    models = [
        default_model,
        'blackboxai-pro',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
        *image_models,
        'Niansuh',
    ]

    # Filter models based on AVAILABLE_MODELS
    AVAILABLE_MODELS = os.getenv("AVAILABLE_MODELS", "")
    if AVAILABLE_MODELS:
        AVAILABLE_MODELS = [model.strip() for model in AVAILABLE_MODELS.split(',') if model.strip()]
        models = [model for model in models if model in AVAILABLE_MODELS]

    agentMode = {
        'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
        'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
    }
    trendingAgentMode = {
        "blackboxai": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
        'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
        'PythonAgent': {'mode': True, 'id': "Python Agent"},
        'JavaAgent': {'mode': True, 'id': "Java Agent"},
        'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
        'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
        'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
        'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
        'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
        'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
        'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
        'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
        'ReactAgent': {'mode': True, 'id': "React Agent"},
        'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
        'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
    }

    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }

    model_prefixes = {
        'gpt-4o': '@GPT-4o',
        'gemini-pro': '@Gemini-PRO',
        'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
        'PythonAgent': '@Python Agent',
        'JavaAgent': '@Java Agent',
        'JavaScriptAgent': '@JavaScript Agent',
        'HTMLAgent': '@HTML Agent',
        'GoogleCloudAgent': '@Google Cloud Agent',
        'AndroidDeveloper': '@Android Developer',
        'SwiftDeveloper': '@Swift Developer',
        'Next.jsAgent': '@Next.js Agent',
        'MongoDBAgent': '@MongoDB Agent',
        'PyTorchAgent': '@PyTorch Agent',
        'ReactAgent': '@React Agent',
        'XcodeAgent': '@Xcode Agent',
        'AngularJSAgent': '@AngularJS Agent',
        'blackboxai-pro': '@BLACKBOXAI-PRO',
        'ImageGeneration': '@Image Generation',
        'Niansuh': '@Niansuh',
    }

    model_referers = {
        "blackboxai": f"{url}/?model=blackboxai",
        "gpt-4o": f"{url}/?model=gpt-4o",
        "gemini-pro": f"{url}/?model=gemini-pro",
        "claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
    }

    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "claude-3.5-sonnet": "claude-sonnet-3.5",
        "flux": "ImageGeneration",
        "niansuh": "Niansuh",
    }

    @classmethod
    def get_model(cls, model: str) -> Optional[str]:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel and cls.userSelectedModel[model] in cls.models:
            return model
        elif model in cls.model_aliases and cls.model_aliases[model] in cls.models:
            return cls.model_aliases[model]
        else:
            return cls.default_model if cls.default_model in cls.models else None

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        image: Any = None,
        image_name: Optional[str] = None,
        webSearchMode: bool = False,
        **kwargs
    ) -> AsyncGenerator[Any, None]:
        model = cls.get_model(model)
        if model is None:
            logger.error(f"Model {model} is not available. | NiansuhAI")
            raise ModelNotWorkingException(model)

        logger.info(f"Selected model: {model}")

        if not cls.working or model not in cls.models:
            logger.error(f"Model {model} is not working or not supported. | NiansuhAI")
            raise ModelNotWorkingException(model)
        
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "priority": "u=1, i",
            "referer": cls.model_referers.get(model, cls.url),
            "sec-ch-ua": '"Chromium";v="130", "Not=A?Brand";v="99"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36",
        }

        if model in cls.model_prefixes:
            prefix = cls.model_prefixes[model]
            if not messages[0]['content'].startswith(prefix):
                logger.debug(f"Adding prefix '{prefix}' to the first message.")
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"
        
        random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
        messages[-1]['id'] = random_id
        messages[-1]['role'] = 'user'

        # Don't log the full message content for privacy
        logger.debug(f"Generated message ID: {random_id} for model: {model}")

        if image is not None:
            messages[-1]['data'] = {
                'fileText': '',
                'imageBase64': to_data_uri(image),
                'title': image_name
            }
            messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
            logger.debug("Image data added to the message.")
        
        data = {
            "messages": messages,
            "id": random_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": {},
            "trendingAgentMode": {},
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 99999999,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "userSelectedModel": None,
            "webSearchMode": webSearchMode,
        }

        if model in cls.agentMode:
            data["agentMode"] = cls.agentMode[model]
        elif model in cls.trendingAgentMode:
            data["trendingAgentMode"] = cls.trendingAgentMode[model]
        elif model in cls.userSelectedModel:
            data["userSelectedModel"] = cls.userSelectedModel[model]
        logger.info(f"Sending request to {cls.api_endpoint} with data (excluding messages).")

        timeout = ClientTimeout(total=60)  # Set an appropriate timeout
        retry_attempts = 10  # Set the number of retry attempts

        for attempt in range(retry_attempts):
            try:
                async with ClientSession(headers=headers, timeout=timeout) as session:
                    async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                        response.raise_for_status()
                        logger.info(f"Received response with status {response.status}")
                        if model == 'ImageGeneration':
                            response_text = await response.text()
                            url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                            if url_match:
                                image_url = url_match.group(0)
                                logger.info(f"Image URL found.")
                                yield ImageResponse(image_url, alt=messages[-1]['content'])
                            else:
                                logger.error("Image URL not found in the response.")
                                raise Exception("Image URL not found in the response | NiansuhAI")
                        else:
                            full_response = ""
                            search_results_json = ""
                            try:
                                async for chunk, _ in response.content.iter_chunks():
                                    if chunk:
                                        decoded_chunk = chunk.decode(errors='ignore')
                                        decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                                        if decoded_chunk.strip():
                                            if '$~~~$' in decoded_chunk:
                                                search_results_json += decoded_chunk
                                            else:
                                                full_response += decoded_chunk
                                                yield decoded_chunk
                                logger.info("Finished streaming response chunks.")
                            except Exception as e:
                                logger.exception("Error while iterating over response chunks.")
                                raise e
                            if data["webSearchMode"] and search_results_json:
                                match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
                                if match:
                                    try:
                                        search_results = json.loads(match.group(1))
                                        formatted_results = "\n\n**Sources:**\n"
                                        for i, result in enumerate(search_results[:5], 1):
                                            formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
                                        logger.info("Formatted search results.")
                                        yield formatted_results
                                    except json.JSONDecodeError as je:
                                        logger.error("Failed to parse search results JSON.")
                                        raise je
                break  # Exit the retry loop if successful
            except ClientError as ce:
                logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=502, detail="Error communicating with the external API. | NiansuhAI")
            except asyncio.TimeoutError:
                logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=504, detail="External API request timed out. | NiansuhAI")
            except Exception as e:
                logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=500, detail=str(e))

@app.post("/v1/chat/completions", dependencies=[Depends(limiter.limit("60/minute")), Depends(get_db_log_handler)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key), db: Session = Depends(get_db)):
    # Redact user messages only for logging purposes
    redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]

    logger.info(f"Received chat completions request from API key: {api_key} | Model: {request.model} | Messages: {redacted_messages}")

    try:
        # Validate that the requested model is available
        if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
            logger.warning(f"Attempt to use unavailable model: {request.model}")
            raise HTTPException(status_code=400, detail="Requested model is not available. | NiansuhAI")

        # Process the request with actual message content, but don't log it
        async_generator = Blackbox.create_async_generator(
            model=request.model,
            messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],  # Actual message content used here
            image=None,
            image_name=None,
            webSearchMode=request.webSearchMode
        )

        if request.stream:
            async def generate():
                try:
                    async for chunk in async_generator:
                        if isinstance(chunk, ImageResponse):
                            image_markdown = f"![image]({chunk.url})"
                            response_chunk = create_response(image_markdown, request.model)
                            
                            # Store image in the database
                            image_entry = Image(
                                image_url=chunk.url,
                                description=request.messages[-1].get('content', '')
                            )
                            db.add(image_entry)
                            db.commit()
                        else:
                            response_chunk = create_response(chunk, request.model)
                        
                        yield f"data: {json.dumps(response_chunk)}\n\n"
                    
                    yield "data: [DONE]\n\n"
                except HTTPException as he:
                    error_response = {"error": he.detail}
                    yield f"data: {json.dumps(error_response)}\n\n"
                except Exception as e:
                    logger.exception("Error during streaming response generation.")
                    error_response = {"error": str(e)}
                    yield f"data: {json.dumps(error_response)}\n\n"

            return StreamingResponse(generate(), media_type="text/event-stream")
        else:
            response_content = ""
            async for chunk in async_generator:
                if isinstance(chunk, ImageResponse):
                    response_content += f"![image]({chunk.url})\n"
                    
                    # Store image in the database
                    image_entry = Image(
                        image_url=chunk.url,
                        description=request.messages[-1].get('content', '')
                    )
                    db.add(image_entry)
                    db.commit()
                else:
                    response_content += chunk

            logger.info(f"Completed non-streaming response generation for API key: {api_key} | Model: {request.model}")
            return {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "choices": [
                    {
                        "message": {
                            "role": "assistant",
                            "content": response_content
                        },
                        "finish_reason": "stop",
                        "index": 0
                    }
                ],
                "usage": {
                    "prompt_tokens": sum(len(msg.content.split()) for msg in request.messages),
                    "completion_tokens": len(response_content.split()),
                    "total_tokens": sum(len(msg.content.split()) for msg in request.messages) + len(response_content.split())
                },
            }
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail}")
        raise he
    except Exception as e:
        logger.exception("An unexpected error occurred while processing the chat completions request.")
        raise HTTPException(status_code=500, detail=str(e))

# Removed the /v1/completions endpoint as per user request

# Return 'about:blank' when accessing the endpoint via GET
@app.get("/v1/chat/completions")
async def chat_completions_get():
    logger.info("GET request made to /v1/chat/completions, redirecting to 'about:blank'")
    return RedirectResponse(url='about:blank')

@app.get("/v1/models")
async def get_models(req: Request):
    logger.info(f"Fetching available models")
    return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}

# Additional endpoints for better functionality
@app.get("/v1/health")
async def health_check(req: Request):
    logger.info(f"Health check requested")
    return {"status": "ok"}

@app.get("/v1/models/{model}/status")
async def model_status(model: str, req: Request):
    logger.info(f"Model status requested for '{model}'")
    if model in Blackbox.models:
        return {"model": model, "status": "available"}
    elif model in Blackbox.model_aliases and Blackbox.model_aliases[model] in Blackbox.models:
        actual_model = Blackbox.model_aliases[model]
        return {"model": actual_model, "status": "available via alias"}
    else:
        logger.warning(f"Model not found: {model}")
        raise HTTPException(status_code=404, detail="Model not found")

# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
    logger.error(f"HTTPException: {exc.detail}")
    return JSONResponse(
        status_code=exc.status_code,
        content={
            "error": {
                "message": exc.detail,
                "type": "invalid_request_error",
                "param": None,
                "code": None
            }
        },
    )

# New endpoint: /v1/tokenizer to calculate token counts
class TokenizerRequest(BaseModel):
    text: str

@app.post("/v1/tokenizer")
async def tokenizer(request: TokenizerRequest, req: Request):
    text = request.text
    token_count = len(text.split())
    logger.info(f"Tokenizer called | Tokens: {token_count}")
    return {"text": text, "tokens": token_count}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)