File size: 2,426 Bytes
110efbd 628f747 110efbd 628f747 110efbd 628f747 110efbd 628f747 80dc124 110efbd 628f747 110efbd 80dc124 110efbd 80dc124 110efbd 80dc124 110efbd 80dc124 110efbd 628f747 110efbd 628f747 a36f60f 628f747 110efbd a36f60f 110efbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
import json
import re
import random
import string
from aiohttp import ClientSession
# Pydantic models for request
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: list[Message]
# Blackbox class
class Blackbox:
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
models = [
'blackbox',
'gemini-1.5-flash',
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'ImageGenerationLV45LJp',
'gpt-4o',
'gemini-pro',
'claude-sonnet-3.5',
]
@classmethod
def get_model(cls, model: str) -> str:
return model if model in cls.models else 'blackbox'
@classmethod
async def create_async_generator(cls, model: str, messages: list) -> str:
model = cls.get_model(model)
headers = {
"accept": "*/*",
"content-type": "application/json",
"user-agent": "Mozilla/5.0"
}
async with ClientSession(headers=headers) as session:
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
data = {
"messages": messages,
"id": random_id,
"maxTokens": 1024,
}
async with session.post(cls.api_endpoint, json=data) as response:
response.raise_for_status()
async for chunk in response.content.iter_any():
if chunk:
decoded_chunk = chunk.decode()
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
yield decoded_chunk.strip()
# FastAPI app
app = FastAPI()
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatRequest):
messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
async_generator = Blackbox.create_async_generator(
model=request.model,
messages=messages
)
async def event_stream():
async for chunk in async_generator:
yield f"data: {json.dumps({'choices': [{'message': {'role': 'assistant', 'content': chunk}}]}})}\n\n"
return StreamingResponse(event_stream(), media_type="text/event-stream")
|