File size: 9,413 Bytes
7070320
 
 
 
 
8a3edf7
7070320
 
7937c8d
7070320
 
628f747
7937c8d
 
 
 
 
628f747
7937c8d
8a3edf7
7937c8d
 
 
 
628f747
7937c8d
 
 
 
628f747
 
8a3edf7
 
 
 
80dc124
7937c8d
80dc124
 
 
 
 
 
 
 
 
 
 
 
8a3edf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80dc124
 
7937c8d
 
8a3edf7
 
 
 
 
 
628f747
 
7937c8d
 
 
 
 
 
 
 
8a3edf7
80dc124
8a3edf7
80dc124
8a3edf7
 
 
 
 
 
 
 
 
 
 
 
 
 
80dc124
 
8a3edf7
 
 
 
 
80dc124
7937c8d
 
 
 
 
8a3edf7
 
7937c8d
80dc124
 
8a3edf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80dc124
 
8a3edf7
 
 
 
 
 
 
7937c8d
80dc124
8a3edf7
 
 
 
 
 
 
 
0d812a5
8a3edf7
 
 
 
 
 
628f747
7937c8d
628f747
 
7937c8d
 
 
 
 
 
 
8a3edf7
 
4e4fed1
628f747
45670a8
 
 
 
 
 
 
 
 
 
2f2df1f
45670a8
 
8e53718
45670a8
 
 
 
 
 
 
 
 
8e53718
45670a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import uuid
import logging
from datetime import datetime
from typing import Any, Dict, List, Optional

import httpx
from fastapi import FastAPI, HTTPException, Depends
from pydantic import BaseModel
from starlette.middleware.cors import CORSMiddleware
from starlette.responses import StreamingResponse, Response

# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    # Placeholder for actual image encoding
    return "data:image/png;base64,..."  # Replace with actual base64 data

class AsyncGeneratorProvider:
    pass

class ProviderModelMixin:
    pass

class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True
    
    default_model = 'blackbox'
    models = [
        'blackbox',
        'gemini-1.5-flash',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'ImageGenerationLV45LJp',
        'gpt-4o',
        'gemini-pro',
        'claude-sonnet-3.5',
    ]

    agentMode = {
        'ImageGenerationLV45LJp': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
    }

    trendingAgentMode = {
        "blackbox": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
    }
    
    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }
    
    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "flux": "ImageGenerationLV45LJp",
    }

    @classmethod
    def get_model(cls, model: str) -> str:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel:
            return model
        elif model in cls.model_aliases:
            return cls.model_aliases[model]
        else:
            return cls.default_model

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        image: Optional[Any] = None,
        image_name: Optional[str] = None,
        **kwargs
    ) -> Any:
        model = cls.get_model(model)
        
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "referer": f"{cls.url}/",
            "sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
        }

        if model in cls.userSelectedModel:
            prefix = f"@{cls.userSelectedModel[model]}"
            if not messages[0]['content'].startswith(prefix):
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"
        
        async with ClientSession(headers=headers) as session:
            if image is not None:
                messages[-1]["data"] = {
                    "fileText": image_name,
                    "imageBase64": to_data_uri(image)
                }
            
            random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))

            data = {
                "messages": messages,
                "id": random_id,
                "previewToken": None,
                "userId": None,
                "codeModelMode": True,
                "agentMode": {},
                "trendingAgentMode": {},
                "userSelectedModel": None,
                "userSystemPrompt": None,
                "isMicMode": False,
                "maxTokens": 1024,
                "playgroundTopP": 0.9,
                "playgroundTemperature": 0.5,
                "isChromeExt": False,
                "githubToken": None,
                "clickedAnswer2": False,
                "clickedAnswer3": False,
                "clickedForceWebSearch": False,
                "visitFromDelta": False,
                "mobileClient": False,
                "webSearchMode": False,
            }

            if model in cls.agentMode:
                data["agentMode"] = cls.agentMode[model]
            elif model in cls.trendingAgentMode:
                data["trendingAgentMode"] = cls.trendingAgentMode[model]
            elif model in cls.userSelectedModel:
                data["userSelectedModel"] = cls.userSelectedModel[model]
            
            async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                response.raise_for_status()
                if model == 'ImageGenerationLV45LJp':
                    response_text = await response.text()
                    url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                    if url_match:
                        image_url = url_match.group(0)
                        yield ImageResponse(image_url, alt=messages[-1]['content'])
                    else:
                        raise Exception("Image URL not found in the response")
                else:
                    async for chunk in response.content.iter_any():
                        if chunk:
                            decoded_chunk = chunk.decode()
                            decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                            if decoded_chunk.strip():
                                yield decoded_chunk

# FastAPI app setup
app = FastAPI()

class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]

from fastapi.responses import Response

@app.post("/v1/chat/completions")
async def chat_completions(
    request: ChatRequest, app_secret: str = Depends(verify_app_secret)
):
    logger.info(f"Received chat completion request for model: {request.model}")

    if request.model not in [model['id'] for model in ALLOWED_MODELS]:
        raise HTTPException(
            status_code=400,
            detail=f"Model {request.model} is not allowed. Allowed models are: {', '.join(model['id'] for model in ALLOWED_MODELS)}",
        )

    # Generate a UUID for the conversation
    conversation_id = str(uuid.uuid4()).replace("-", "")

    json_data = {
        "attachments": [],
        "conversationId": conversation_id,
        "prompt": "\n".join(
            [
                f"{'User' if msg.role == 'user' else 'Assistant'}: {msg.content}"
                for msg in request.messages
            ]
        ),
    }

    headers["uniqueid"] = conversation_id

    async def generate():
        async with httpx.AsyncClient() as client:
            try:
                async with client.stream('POST', f'{BASE_URL}/api/chat/gpt4o/chat', headers=headers, json=json_data, timeout=120.0) as response:
                    response.raise_for_status()
                    async for line in response.aiter_lines():
                        if line and line != "[DONE]":
                            content = json.loads(line)["data"]
                            yield f"data: {json.dumps(create_chat_completion_data(content['message'], request.model))}\n\n"
                    yield f"data: {json.dumps(create_chat_completion_data('', request.model, 'stop'))}\n\n"
                    yield "data: [DONE]\n\n"
            except httpx.HTTPStatusError as e:
                logger.error(f"HTTP error occurred: {e}")
                raise HTTPException(status_code=e.response.status_code, detail=str(e))
            except httpx.RequestError as e:
                logger.error(f"An error occurred while requesting: {e}")
                raise HTTPException(status_code=500, detail=str(e))

    if request.stream:
        logger.info("Streaming response")
        return StreamingResponse(generate(), media_type="text/event-stream")
    else:
        logger.info("Non-streaming response")
        full_response = ""
        async for chunk in generate():
            if chunk.startswith("data: ") and not chunk[6:].startswith("[DONE]"):
                data = json.loads(chunk[6:])
                if data["choices"][0]["delta"].get("content"):
                    full_response += data["choices"][0]["delta"]["content"]

        return {
            "id": f"chatcmpl-{uuid.uuid4()}",
            "object": "chat.completion",
            "created": int(datetime.now().timestamp()),
            "model": request.model,
            "choices": [
                {
                    "index": 0,
                    "message": {"role": "assistant", "content": full_response},
                    "finish_reason": "stop",
                }
            ],
            "usage": None,
        }