Spaces:
Running
Running
File size: 1,316 Bytes
46205c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# Import required libraries
import streamlit as st
from transformers import ViTForImageClassification, ViTFeatureExtractor
from PIL import Image
import torch
# Load the pre-trained model and feature extractor
model_name = "nateraw/vit-age-classifier"
model = ViTForImageClassification.from_pretrained(model_name)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
# Set up Streamlit app
st.set_page_config(page_title="Age Classifier", page_icon="👶")
st.title("Age Classification using AI")
st.write("Upload an image of a person, and the model will predict their age group.")
# Upload image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Open the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Preprocess the image
inputs = feature_extractor(images=image, return_tensors="pt")
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Get the predicted class
predicted_class_idx = logits.argmax(-1).item()
predicted_age_group = model.config.id2label[predicted_class_idx]
# Display the result
st.write(f"**Predicted Age Group:** {predicted_age_group}") |