Spaces:
Sleeping
Sleeping
Commit
·
f3c19a0
1
Parent(s):
ef1263f
update
Browse files
app.py
CHANGED
@@ -1,28 +1,19 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
-
import numpy as np
|
4 |
-
from transformers import AutoModelForSequenceClassification
|
5 |
|
6 |
-
# Load
|
7 |
model = AutoModelForSequenceClassification.from_pretrained(
|
8 |
"Kevintu/Engessay_grading_ML")
|
|
|
9 |
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Process embeddings with the model
|
16 |
model.eval()
|
17 |
with torch.no_grad():
|
18 |
-
|
19 |
-
model_inputs = {
|
20 |
-
'input_ids': None, # Not needed since we're using embeddings directly
|
21 |
-
'attention_mask': None, # Not needed for this use case
|
22 |
-
'inputs_embeds': embeddings_tensor # Pass embeddings directly
|
23 |
-
}
|
24 |
-
outputs = model(**model_inputs)
|
25 |
-
|
26 |
predictions = outputs.logits.squeeze()
|
27 |
|
28 |
item_names = ["cohesion", "syntax", "vocabulary",
|
@@ -35,14 +26,18 @@ def process_embeddings(embeddings_array):
|
|
35 |
return results
|
36 |
|
37 |
|
38 |
-
# Create Gradio interface
|
39 |
demo = gr.Interface(
|
40 |
-
fn=
|
41 |
-
inputs=gr.
|
42 |
-
outputs=gr.JSON(
|
43 |
title="Essay Grading API",
|
44 |
-
description="Grade essays
|
|
|
|
|
|
|
45 |
)
|
46 |
|
|
|
47 |
demo.queue()
|
48 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
+
# Load model and tokenizer
|
6 |
model = AutoModelForSequenceClassification.from_pretrained(
|
7 |
"Kevintu/Engessay_grading_ML")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("KevSun/Engessay_grading_ML")
|
9 |
|
10 |
|
11 |
+
def grade_essay(text):
|
12 |
+
encoded_input = tokenizer(
|
13 |
+
text, return_tensors='pt', padding=True, truncation=True, max_length=64)
|
|
|
|
|
14 |
model.eval()
|
15 |
with torch.no_grad():
|
16 |
+
outputs = model(**encoded_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
predictions = outputs.logits.squeeze()
|
18 |
|
19 |
item_names = ["cohesion", "syntax", "vocabulary",
|
|
|
26 |
return results
|
27 |
|
28 |
|
29 |
+
# Create Gradio interface
|
30 |
demo = gr.Interface(
|
31 |
+
fn=grade_essay,
|
32 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter essay text here..."),
|
33 |
+
outputs=gr.JSON(),
|
34 |
title="Essay Grading API",
|
35 |
+
description="Grade essays on six dimensions of writing quality",
|
36 |
+
examples=[
|
37 |
+
["The English Language Learner Insight, Proficiency and Skills Evaluation (ELLIPSE) Corpus is a freely available corpus of ~6,500 ELL writing samples that have been scored for overall holistic language proficiency as well as analytic proficiency scores."]
|
38 |
+
],
|
39 |
)
|
40 |
|
41 |
+
# For API access
|
42 |
demo.queue()
|
43 |
demo.launch()
|