import streamlit as st from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import requests import daal4py as d4p # Intel DAAL import numpy as np import dpctl from sklearnex import patch_sklearn, config_context patch_sklearn() # Alpha Vantage API Setup (replace with your API key) ALPHA_VANTAGE_API_KEY = "your_alpha_vantage_api_key" # Initialize Hugging Face's sentiment analysis pipeline @st.cache_resource def load_sentiment_model(): return pipeline("sentiment-analysis", model="huggingface/llama-3b-instruct") # Load LLaMA model for custom recommendations or Q&A @st.cache_resource def load_llama_model(): model_name = "meta-llama/Llama-2-7b-chat-hf" # Adjust this to your preferred model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return tokenizer, model # Fetch stock data using Alpha Vantage def fetch_stock_data(symbol): url = f"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={symbol}&apikey={ALPHA_VANTAGE_API_KEY}" response = requests.get(url) return response.json().get("Time Series (Daily)", {}) # Compute Moving Average using Intel oneDAL def compute_moving_average(prices, window=5): # Convert prices to a NumPy array and reshape it for DAAL import numpy as np price_array = np.array(prices, dtype=np.float64).reshape(-1, 1) # Initialize Intel DAAL low-order moments algorithm (for moving average) algorithm = d4p.low_order_moments() # Apply rolling window and calculate moving averages moving_averages = [] for i in range(len(price_array) - window + 1): window_data = price_array[i:i + window] result = algorithm.compute(window_data) moving_averages.append(result.mean[0]) return moving_averages # Perform technical analysis using Alpha Vantage and oneDAL def technical_analysis(symbol): data = fetch_stock_data(symbol) if data: # Extract closing prices from the time series data closing_prices = [float(v['4. close']) for v in data.values()] dates = list(data.keys()) # Compute 5-day moving average using oneDAL moving_averages = compute_moving_average(closing_prices) # Display latest date's price and moving average latest_date = dates[0] latest_price = closing_prices[0] latest_moving_average = moving_averages[0] if moving_averages else "N/A" return { "Date": latest_date, "Closing Price": latest_price, "5-Day Moving Average": latest_moving_average } return {} # Streamlit Web App def main(): st.title("Stock Analysis App with Intel oneDAL") st.write(""" This app provides a comprehensive stock analysis including: - Sentiment Analysis of recent news - Fundamental Analysis (Market Cap, PE Ratio, EPS) - Technical Analysis (Prices, Moving Average using Intel oneDAL) - Buy/Sell/Hold Recommendations """) # Input: Stock symbol of a public listed company company_symbol = st.text_input("Enter the stock symbol (e.g., AAPL, TSLA, GOOGL):") if company_symbol: try: # Fetch stock data from Alpha Vantage API stock_data = fetch_stock_data(company_symbol) if stock_data: # Display the fetched stock overview st.subheader("Asset Overview") st.json(stock_data) # Split the sections into different boxes using Streamlit's `expander` with st.expander("Technical Analysis (Intel oneDAL)"): st.subheader("Technical Analysis") tech_analysis = technical_analysis(company_symbol) st.write(tech_analysis) with st.expander("Sentiment Analysis"): st.subheader("Sentiment Analysis") sentiment_model = load_sentiment_model() sentiment = sentiment_analysis(company_symbol, sentiment_model) st.write(sentiment) with st.expander("Recommendation"): st.subheader("Recommendation") tokenizer, llama_model = load_llama_model() stock_recommendation = recommendation(company_symbol, tokenizer, llama_model) st.write(stock_recommendation) else: st.error(f"No data available for the symbol entered.") except Exception as e: st.error(f"An error occurred: {e}") if __name__ == "__main__": main()