Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,12 @@ from PIL import Image
|
|
3 |
import torch
|
4 |
from diffusers import StableDiffusionInpaintPipeline
|
5 |
import numpy as np
|
|
|
|
|
6 |
|
7 |
# Load the StableDiffusionInpaintPipeline
|
8 |
pipe = StableDiffusionInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting")
|
|
|
9 |
|
10 |
# Function to process the image with the provided prompt
|
11 |
def process_image(image, prompt):
|
@@ -17,14 +20,16 @@ def process_image(image, prompt):
|
|
17 |
elif not isinstance(image, Image.Image):
|
18 |
raise ValueError("The image should be either a PIL Image or a numpy array.")
|
19 |
|
20 |
-
# Resize image
|
21 |
image = image.resize((512, 512))
|
22 |
|
23 |
-
#
|
24 |
-
|
|
|
25 |
|
26 |
-
#
|
27 |
-
edited_image = pipe(prompt=prompt, init_image=
|
|
|
28 |
return edited_image
|
29 |
|
30 |
# Streamlit app
|
@@ -46,7 +51,7 @@ def main():
|
|
46 |
edited_image = process_image(image, prompt)
|
47 |
|
48 |
# Display the edited image
|
49 |
-
st.image(edited_image, caption="Edited Image",
|
50 |
|
51 |
if __name__ == "__main__":
|
52 |
main()
|
|
|
3 |
import torch
|
4 |
from diffusers import StableDiffusionInpaintPipeline
|
5 |
import numpy as np
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
|
9 |
# Load the StableDiffusionInpaintPipeline
|
10 |
pipe = StableDiffusionInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting")
|
11 |
+
pipe.to("cuda" if torch.cuda.is_available() else "cpu") # Move model to GPU if available
|
12 |
|
13 |
# Function to process the image with the provided prompt
|
14 |
def process_image(image, prompt):
|
|
|
20 |
elif not isinstance(image, Image.Image):
|
21 |
raise ValueError("The image should be either a PIL Image or a numpy array.")
|
22 |
|
23 |
+
# Resize image to the required size (512x512)
|
24 |
image = image.resize((512, 512))
|
25 |
|
26 |
+
# Convert the PIL image to the format that the model expects
|
27 |
+
image = np.array(image) # Convert to numpy array
|
28 |
+
image = torch.from_numpy(image).unsqueeze(0).float() # Convert to tensor and add batch dimension
|
29 |
|
30 |
+
# Process the image through the pipeline
|
31 |
+
edited_image = pipe(prompt=prompt, init_image=image, strength=0.75).images[0]
|
32 |
+
|
33 |
return edited_image
|
34 |
|
35 |
# Streamlit app
|
|
|
51 |
edited_image = process_image(image, prompt)
|
52 |
|
53 |
# Display the edited image
|
54 |
+
st.image(edited_image, caption="Edited Image", use_container_width=True)
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
main()
|