Spaces:
Running
Running
import streamlit as st | |
from PIL import Image | |
from diffusers import StableDiffusionInpaintPipeline | |
import torch | |
import os | |
# Load Stable Diffusion Inpainting Pipeline | |
def load_pipeline(): | |
pipeline = StableDiffusionInpaintPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-inpainting", | |
torch_dtype=torch.float16, | |
) | |
return pipeline.to("cuda" if torch.cuda.is_available() else "cpu") | |
stability_pipeline = load_pipeline() | |
# Streamlit App Title | |
st.title("AI-Powered Image Editor") | |
st.markdown("Upload an image, optionally upload a mask, and provide a command to edit the image.") | |
# Image Upload | |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"]) | |
uploaded_mask = st.file_uploader("Upload a Mask Image (optional)", type=["jpg", "jpeg", "png"]) | |
prompt = st.text_input("Enter your prompt (e.g., 'Add a sunset in the background')") | |
if st.button("Generate"): | |
if uploaded_image is None: | |
st.error("Please upload an image to proceed.") | |
else: | |
# Load and process the uploaded image | |
image = Image.open(uploaded_image).convert("RGB") | |
mask = Image.open(uploaded_mask).convert("RGB") if uploaded_mask else None | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
if mask: | |
st.image(mask, caption="Uploaded Mask", use_column_width=True) | |
# Generate the edited image | |
with st.spinner("Generating edited image..."): | |
try: | |
result = stability_pipeline(prompt=prompt, image=image, mask_image=mask).images[0] | |
st.image(result, caption="Edited Image", use_column_width=True) | |
# Save the result | |
output_path = "edited_image.jpg" | |
result.save(output_path) | |
st.success(f"Image generated and saved as {output_path}") | |
except Exception as e: | |
st.error(f"Error: {e}") | |