File size: 8,315 Bytes
bc5a411
077fc3d
 
 
bc5a411
 
cff8aa8
 
ab9e9c4
bc5a411
077fc3d
51df617
3668992
 
 
 
 
 
 
 
 
 
077fc3d
 
bc5a411
 
077fc3d
449a298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5a411
 
 
 
 
 
ab9e9c4
 
 
 
3a72088
077fc3d
bc5a411
 
d8035da
bc5a411
 
 
 
 
 
 
 
 
 
3a72088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd412c
3a72088
9cd412c
3a72088
 
 
bc5a411
 
 
 
 
e3d2366
 
 
 
 
3a72088
 
 
 
 
 
e3d2366
bc5a411
 
 
 
077fc3d
 
 
bc5a411
 
077fc3d
 
 
 
3a72088
 
 
 
077fc3d
bc5a411
b981e2c
1473645
077fc3d
 
aa344ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gc
import math
import sys

from IPython import display
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision import utils as tv_utils
from torchvision.transforms import functional as TF
import gradio as gr
from git.repo.base import Repo
from os.path import exists as path_exists

if not (path_exists(f"v-diffusion-pytorch")):
    Repo.clone_from("https://github.com/crowsonkb/v-diffusion-pytorch", "v-diffusion-pytorch")
if not (path_exists(f"CLIP")):
    Repo.clone_from("https://github.com/openai/CLIP", "CLIP")
sys.path.append('v-diffusion-pytorch')


from huggingface_hub import hf_hub_download

from CLIP import clip
from diffusion import get_model, sampling, utils

class MakeCutouts(nn.Module):
    def __init__(self, cut_size, cutn, cut_pow=1.):
        super().__init__()
        self.cut_size = cut_size
        self.cutn = cutn
        self.cut_pow = cut_pow

    def forward(self, input):
        sideY, sideX = input.shape[2:4]
        max_size = min(sideX, sideY)
        min_size = min(sideX, sideY, self.cut_size)
        cutouts = []
        for _ in range(self.cutn):
            size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
            offsetx = torch.randint(0, sideX - size + 1, ())
            offsety = torch.randint(0, sideY - size + 1, ())
            cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
            cutout = F.adaptive_avg_pool2d(cutout, self.cut_size)
            cutouts.append(cutout)
        return torch.cat(cutouts)

cc12m_model = hf_hub_download(repo_id="multimodalart/crowsonkb-v-diffusion-cc12m-1-cfg", filename="cc12m_1_cfg.pth")
model = get_model('cc12m_1_cfg')()
_, side_y, side_x = model.shape
model.load_state_dict(torch.load(cc12m_model, map_location='cpu'))
model = model.half().cuda().eval().requires_grad_(False)
clip_model = clip.load(model.clip_model, jit=False, device='cpu')[0]
clip_model.eval().requires_grad_(False)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
                                     std=[0.26862954, 0.26130258, 0.27577711])
make_cutouts = MakeCutouts(clip_model.visual.input_resolution, 16, 1.)
def run_all(prompt, steps, n_images, weight, clip_guided):
    import random
    seed = int(random.randint(0, 2147483647))
    target_embed = clip_model.encode_text(clip.tokenize(prompt)).float().cuda()
    clip_embed = target_embed.repeat([n_images, 1])
    def cfg_model_fn(x, t):
        """The CFG wrapper function."""
        n = x.shape[0]
        x_in = x.repeat([2, 1, 1, 1])
        t_in = t.repeat([2])
        clip_embed_repeat = target_embed.repeat([n, 1])
        clip_embed_in = torch.cat([torch.zeros_like(clip_embed_repeat), clip_embed_repeat])
        v_uncond, v_cond = model(x_in, t_in, clip_embed_in).chunk(2, dim=0)
        v = v_uncond + (v_cond - v_uncond) * weight
        return v
    
    def make_cond_model_fn(model, cond_fn):
        def cond_model_fn(x, t, **extra_args):
            with torch.enable_grad():
                x = x.detach().requires_grad_()
                v = model(x, t, **extra_args)
                alphas, sigmas = utils.t_to_alpha_sigma(t)
                pred = x * alphas[:, None, None, None] - v * sigmas[:, None, None, None]
                cond_grad = cond_fn(x, t, pred, **extra_args).detach()
                v = v.detach() - cond_grad * (sigmas[:, None, None, None] / alphas[:, None, None, None])
            return v
        return cond_model_fn
    def cond_fn(x, t, pred, clip_embed):
        if min(pred.shape[2:4]) < 256:
            pred = F.interpolate(pred, scale_factor=2, mode='bilinear', align_corners=False)
        clip_in = normalize(make_cutouts((pred + 1) / 2))
        image_embeds = clip_model.encode_image(clip_in).view([16, x.shape[0], -1])
        losses = spherical_dist_loss(image_embeds, clip_embed[None])
        loss = losses.mean(0).sum() * 500.
        grad = -torch.autograd.grad(loss, x)[0]
        return grad
    
    gc.collect()
    torch.cuda.empty_cache()
    torch.manual_seed(seed)
    x = torch.randn([n_images, 3, side_y, side_x], device='cuda')
    t = torch.linspace(1, 0, steps + 1, device='cuda')[:-1]
    #step_list = utils.get_spliced_ddpm_cosine_schedule(t)
    if model.min_t == 0:
        step_list = utils.get_spliced_ddpm_cosine_schedule(t)
    else:
        step_list = utils.get_ddpm_schedule(t)
    if(not clip_guided):
        outs = sampling.plms_sample(cfg_model_fn, x, step_list, {})#, callback=display_callback)
    else:
        extra_args = {'clip_embed': clip_embed}
        cond_fn_ = cond_fn
        model_fn = make_cond_model_fn(model, cond_fn_)
        outs = sampling.plms_sample(model_fn, x, step_list, extra_args)
    images_out = []
    for i, out in enumerate(outs):
        images_out.append(utils.to_pil_image(out))
    return(images_out)
    

##################### START GRADIO HERE ############################
#image = gr.outputs.Image(type="pil", label="Your result")
gallery = gr.Gallery(css={"height": "256px","width":"256px"})
iface = gr.Interface(
    fn=run_all, 
    inputs=[
    gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"),
    gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=40,maximum=80,minimum=1,step=1),
    gr.inputs.Slider(label="Number of images in parallel", default=2, maximum=4, minimum=1, step=1),
    gr.inputs.Slider(label="Weight - how closely the image should resemble the prompt", default=5, maximum=15, minimum=0, step=1),
    gr.inputs.Checkbox(label="CLIP Guided - improves coherence with prompt, makes it slower"),
    ], 
    outputs=gallery,
    title="Generate images from text with V-Diffusion CC12M CFG",
    description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/crowsonkb/v-diffusion-pytorch' target='_blank'>V-Diffusion</a> is diffusion text-to-image model created by <a href='https://twitter.com/RiversHaveWings' target='_blank'>Katherine Crowson</a> and <a href='https://twitter.com/jd_pressman'>JDP</a>, trained on the <a href='https://github.com/google-research-datasets/conceptual-12m'>CC12M dataset</a>. CFG means it can generate images without CLIP Guidance - and fast. The UI to the model was assembled by <a style='color: rgb(99, 102, 241);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a>, keep up with the <a style='color: rgb(99, 102, 241);' href='https://multimodal.art/news' target='_blank'>latest multimodal ai art news here</a> and consider <a style='color: rgb(99, 102, 241);' href='https://www.patreon.com/multimodalart' target='_blank'>supporting us on Patreon</a></div>",
    #article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>"
    )
iface.launch(enable_queue=True)