Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -399,14 +399,26 @@ def generate_dream_response(
|
|
399 |
|
400 |
# Normalize probabilities if they don't sum to 1
|
401 |
prob_sum = conf_probs.sum()
|
402 |
-
|
|
|
|
|
|
|
|
|
403 |
# print(f"Warning step {i}: Confidence probabilities sum {prob_sum:.4f} != 1. Re-normalizing.")
|
404 |
-
|
405 |
-
|
406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
try:
|
408 |
transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
|
409 |
except RuntimeError as e:
|
|
|
410 |
print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
|
411 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
412 |
k_multinomial_fallback = min(num_samples, sort_metric.numel())
|
@@ -414,8 +426,9 @@ def generate_dream_response(
|
|
414 |
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
|
415 |
else:
|
416 |
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
|
417 |
-
else: # Handle cases where multinomial is not possible
|
418 |
-
#
|
|
|
419 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
420 |
k_multinomial_fallback = min(num_samples, sort_metric.numel())
|
421 |
if k_multinomial_fallback > 0:
|
|
|
399 |
|
400 |
# Normalize probabilities if they don't sum to 1
|
401 |
prob_sum = conf_probs.sum()
|
402 |
+
# --- START FIX ---
|
403 |
+
# Ensure the comparison tensor has the same dtype as prob_sum
|
404 |
+
target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
|
405 |
+
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0:
|
406 |
+
# --- END FIX ---
|
407 |
# print(f"Warning step {i}: Confidence probabilities sum {prob_sum:.4f} != 1. Re-normalizing.")
|
408 |
+
# Avoid division by zero if prob_sum is extremely small or zero
|
409 |
+
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype))
|
410 |
+
conf_probs = conf_probs / safe_prob_sum # Use safe_prob_sum
|
411 |
+
|
412 |
+
# Ensure num_samples is valid and probabilities are okay for multinomial
|
413 |
+
# --- START FIX ---
|
414 |
+
# Check sum again after potential normalization
|
415 |
+
final_prob_sum_check = conf_probs.sum()
|
416 |
+
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
|
417 |
+
# --- END FIX ---
|
418 |
try:
|
419 |
transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
|
420 |
except RuntimeError as e:
|
421 |
+
# [Fallback logic remains the same]
|
422 |
print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
|
423 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
424 |
k_multinomial_fallback = min(num_samples, sort_metric.numel())
|
|
|
426 |
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
|
427 |
else:
|
428 |
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
|
429 |
+
else: # Handle cases where multinomial is not possible (e.g., bad probabilities)
|
430 |
+
# [Fallback logic remains the same]
|
431 |
+
# print(f"Warning step {i}: Invalid probabilities for multinomial sampling (sum={final_prob_sum_check:.4f}). Falling back to top-k.")
|
432 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
433 |
k_multinomial_fallback = min(num_samples, sort_metric.numel())
|
434 |
if k_multinomial_fallback > 0:
|