Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,118 +1,5 @@
|
|
1 |
-
#
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
import gradio as gr
|
6 |
-
import spaces
|
7 |
-
# import torch.nn.functional as F # Not needed for DREAM's basic visualization
|
8 |
-
from transformers import AutoTokenizer, AutoModel
|
9 |
-
import time
|
10 |
-
import re # Keep for parsing constraints
|
11 |
-
|
12 |
-
# Use try-except for space deployment vs local
|
13 |
-
try:
|
14 |
-
gpu_check = spaces.GPU
|
15 |
-
print("Running in Gradio Spaces with GPU environment.")
|
16 |
-
except AttributeError:
|
17 |
-
print("Running in local environment or without spaces.GPU.")
|
18 |
-
def gpu_check(func): return func
|
19 |
-
|
20 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
21 |
-
print(f"Using device: {device}")
|
22 |
-
|
23 |
-
# --- Load DREAM Model and Tokenizer ---
|
24 |
-
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
25 |
-
print(f"Loading model: {model_path}")
|
26 |
-
try:
|
27 |
-
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
29 |
-
print("Model and tokenizer loaded.")
|
30 |
-
except Exception as e:
|
31 |
-
print(f"FATAL: Could not load model/tokenizer. Error: {e}")
|
32 |
-
# Optionally exit or raise
|
33 |
-
raise SystemExit(f"Failed to load model: {e}")
|
34 |
-
|
35 |
-
|
36 |
-
# --- Constants for DREAM ---
|
37 |
-
# Find mask token and ID
|
38 |
-
if tokenizer.mask_token is None:
|
39 |
-
print("Warning: Mask token not explicitly set in tokenizer. Trying to add '[MASK]'.")
|
40 |
-
# This might require retraining/fine-tuning if the model didn't see it.
|
41 |
-
# Check if it exists first before adding
|
42 |
-
if '[MASK]' not in tokenizer.get_vocab():
|
43 |
-
tokenizer.add_special_tokens({'mask_token': '[MASK]'})
|
44 |
-
model.resize_token_embeddings(len(tokenizer)) # Resize model embeddings
|
45 |
-
print("Added '[MASK]' and resized embeddings.")
|
46 |
-
else:
|
47 |
-
tokenizer.mask_token = '[MASK]' # Set it if it exists but wasn't assigned
|
48 |
-
print("Found existing '[MASK]', assigned as mask_token.")
|
49 |
-
|
50 |
-
MASK_TOKEN = tokenizer.mask_token
|
51 |
-
MASK_ID = tokenizer.mask_token_id
|
52 |
-
if MASK_ID is None:
|
53 |
-
raise ValueError("Failed to get MASK_ID after attempting to set mask_token.")
|
54 |
-
print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}")
|
55 |
-
|
56 |
-
# Get EOS and PAD token IDs
|
57 |
-
EOS_TOKEN_ID = tokenizer.eos_token_id
|
58 |
-
PAD_TOKEN_ID = tokenizer.pad_token_id
|
59 |
-
print(f"Using EOS_TOKEN_ID={EOS_TOKEN_ID}, PAD_TOKEN_ID={PAD_TOKEN_ID}")
|
60 |
-
# Handle cases where they might be None (though unlikely for most models)
|
61 |
-
if EOS_TOKEN_ID is None:
|
62 |
-
print("Warning: EOS token ID not found.")
|
63 |
-
if PAD_TOKEN_ID is None:
|
64 |
-
print("Warning: PAD token ID not found. Using EOS ID as fallback for hiding.")
|
65 |
-
PAD_TOKEN_ID = EOS_TOKEN_ID # Use EOS as a fallback for hiding logic if PAD is missing
|
66 |
-
|
67 |
-
|
68 |
-
# --- Helper Functions (Constraint Parsing, History Formatting) ---
|
69 |
-
# (Keep parse_constraints and format_chat_history functions as they were)
|
70 |
-
def parse_constraints(constraints_text):
|
71 |
-
"""Parse constraints in format: 'position:word, position:word, ...'"""
|
72 |
-
constraints = {}
|
73 |
-
if not constraints_text:
|
74 |
-
return constraints
|
75 |
-
|
76 |
-
parts = constraints_text.split(',')
|
77 |
-
for part in parts:
|
78 |
-
part = part.strip() # Trim whitespace
|
79 |
-
if ':' not in part:
|
80 |
-
continue
|
81 |
-
try:
|
82 |
-
pos_str, word = part.split(':', 1)
|
83 |
-
pos = int(pos_str.strip())
|
84 |
-
word = word.strip()
|
85 |
-
# Allow empty words if needed, but usually we want a word
|
86 |
-
if word and pos >= 0:
|
87 |
-
constraints[pos] = word
|
88 |
-
except ValueError:
|
89 |
-
print(f"Warning: Could not parse constraint part: '{part}'")
|
90 |
-
continue
|
91 |
-
|
92 |
-
return constraints
|
93 |
-
|
94 |
-
def format_chat_history(history):
|
95 |
-
"""
|
96 |
-
Format chat history for the DREAM model (standard messages format)
|
97 |
-
|
98 |
-
Args:
|
99 |
-
history: List of [user_message, assistant_message] pairs
|
100 |
-
|
101 |
-
Returns:
|
102 |
-
Formatted conversation for the model (list of dictionaries)
|
103 |
-
"""
|
104 |
-
messages = []
|
105 |
-
# Add system prompt if desired (check DREAM examples/recommendations)
|
106 |
-
# messages.append({"role": "system", "content": "You are a helpful assistant."}) # Optional
|
107 |
-
for user_msg, assistant_msg in history:
|
108 |
-
if user_msg: # Handle potential None message if clearing failed
|
109 |
-
messages.append({"role": "user", "content": user_msg})
|
110 |
-
if assistant_msg: # Skip if None (for the latest user message awaiting response)
|
111 |
-
messages.append({"role": "assistant", "content": assistant_msg})
|
112 |
-
|
113 |
-
return messages
|
114 |
-
|
115 |
-
# --- Core Generation Logic for DREAM with Visualization ---
|
116 |
|
117 |
@gpu_check
|
118 |
def dream_generate_response_with_visualization(
|
@@ -126,15 +13,29 @@ def dream_generate_response_with_visualization(
|
|
126 |
alg_temp=0.0,
|
127 |
):
|
128 |
"""
|
129 |
-
Generate text with DREAM model with visualization using the generation hook
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
"""
|
132 |
print("--- Starting DREAM Generation ---")
|
133 |
print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}")
|
134 |
print(f"Constraints: {constraints}")
|
135 |
|
136 |
# --- Input Preparation ---
|
137 |
-
if constraints is None:
|
|
|
138 |
|
139 |
processed_constraints = {}
|
140 |
print("Processing constraints:")
|
@@ -152,29 +53,43 @@ def dream_generate_response_with_visualization(
|
|
152 |
|
153 |
try:
|
154 |
inputs = tokenizer.apply_chat_template(
|
155 |
-
messages,
|
|
|
|
|
|
|
156 |
)
|
157 |
input_ids = inputs.input_ids.to(device=device)
|
158 |
attention_mask = inputs.attention_mask.to(device=device)
|
159 |
prompt_length = input_ids.shape[1]
|
160 |
print(f"Input prompt length: {prompt_length}")
|
|
|
161 |
except Exception as e:
|
162 |
print(f"Error applying chat template: {e}")
|
163 |
-
return [([("Error applying chat template.", "
|
164 |
|
165 |
-
# Check context length (DREAM uses 2048)
|
166 |
if prompt_length + gen_length > 2048:
|
167 |
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.")
|
168 |
gen_length = 2048 - prompt_length
|
169 |
if gen_length <= 0:
|
170 |
print("Error: Prompt is already too long.")
|
171 |
-
return [([("Prompt too long.", "
|
172 |
|
173 |
# --- State for Visualization Hook ---
|
174 |
visualization_states = []
|
175 |
last_x = None
|
176 |
|
177 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
179 |
for pos, token_id in processed_constraints.items():
|
180 |
absolute_pos = pos
|
@@ -185,25 +100,16 @@ def dream_generate_response_with_visualization(
|
|
185 |
for i in range(gen_length):
|
186 |
token_id = initial_x_part[0, i].item()
|
187 |
if token_id == MASK_ID:
|
188 |
-
initial_state_vis.append((MASK_TOKEN, "
|
189 |
-
elif token_id == EOS_TOKEN_ID or token_id == PAD_TOKEN_ID:
|
190 |
-
initial_state_vis.append(("", None)) # Hide special tokens
|
191 |
-
elif i in processed_constraints and processed_constraints[i] == token_id:
|
192 |
-
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
|
193 |
-
display_token = token_str if token_str else "?"
|
194 |
-
initial_state_vis.append((display_token, "Constraint"))
|
195 |
else:
|
196 |
-
|
197 |
-
|
198 |
-
display_token = token_str if token_str else "?"
|
199 |
-
initial_state_vis.append((display_token, "Old")) # Treat unexpected initial non-masks as 'Old'
|
200 |
visualization_states.append(initial_state_vis)
|
201 |
|
202 |
-
|
203 |
# --- Define the Hook Function ---
|
204 |
def generation_tokens_hook_func(step, x, logits):
|
205 |
-
nonlocal last_x, visualization_states
|
206 |
-
# print(f"Hook called for step {step}") # Verbose
|
207 |
|
208 |
current_x = x.clone()
|
209 |
constrained_x = current_x.clone()
|
@@ -213,13 +119,11 @@ def dream_generate_response_with_visualization(
|
|
213 |
return current_x
|
214 |
|
215 |
# 1. Apply Constraints
|
216 |
-
constraints_applied_this_step = False
|
217 |
for pos, token_id in processed_constraints.items():
|
218 |
absolute_pos = prompt_len + pos
|
219 |
if prompt_len <= absolute_pos < current_x.shape[1]:
|
220 |
if constrained_x[0, absolute_pos] != token_id:
|
221 |
constrained_x[0, absolute_pos] = token_id
|
222 |
-
constraints_applied_this_step = True
|
223 |
|
224 |
# 2. Generate Visualization State for *this* step
|
225 |
current_state_vis = []
|
@@ -229,33 +133,52 @@ def dream_generate_response_with_visualization(
|
|
229 |
for i in range(gen_length):
|
230 |
current_token_id = gen_part_current[i].item()
|
231 |
|
232 |
-
|
233 |
-
if current_token_id
|
234 |
-
|
235 |
-
|
236 |
-
# Let's implement the simpler "always hide" first.
|
237 |
-
current_state_vis.append(("", None)) # Append empty string, no label -> hidden
|
238 |
-
continue # Move to next token
|
239 |
-
|
240 |
-
# --- Decode and Determine Label ---
|
241 |
-
token_str = tokenizer.decode([current_token_id], skip_special_tokens=True).strip()
|
242 |
-
display_token = token_str if token_str else MASK_TOKEN if current_token_id == MASK_ID else "?" # Use MASK_TOKEN if decode fails
|
243 |
|
244 |
-
label = None # Default label (no color)
|
245 |
is_constrained = i in processed_constraints
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
|
|
247 |
if current_token_id == MASK_ID:
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
else:
|
255 |
-
# Previously revealed
|
256 |
-
|
|
|
257 |
|
258 |
-
current_state_vis.append((display_token,
|
259 |
|
260 |
visualization_states.append(current_state_vis)
|
261 |
|
@@ -265,11 +188,12 @@ def dream_generate_response_with_visualization(
|
|
265 |
# 4. Return the sequence with constraints applied
|
266 |
return constrained_x
|
267 |
|
|
|
268 |
# --- Run DREAM Generation ---
|
269 |
try:
|
270 |
print("Calling model.diffusion_generate...")
|
271 |
initial_full_x = torch.cat([input_ids, initial_x_part], dim=1)
|
272 |
-
last_x = initial_full_x.clone() # Initialize last_x
|
273 |
|
274 |
output = model.diffusion_generate(
|
275 |
input_ids,
|
@@ -289,33 +213,45 @@ def dream_generate_response_with_visualization(
|
|
289 |
final_sequence = output.sequences[0]
|
290 |
response_token_ids = final_sequence[prompt_length:]
|
291 |
|
292 |
-
# Decode final text
|
293 |
final_text = tokenizer.decode(
|
294 |
response_token_ids,
|
295 |
skip_special_tokens=True,
|
296 |
clean_up_tokenization_spaces=True
|
297 |
).strip()
|
298 |
-
print(f"Final generated text: {final_text}")
|
299 |
|
300 |
-
#
|
|
|
301 |
if len(visualization_states) <= steps:
|
|
|
302 |
final_state_vis = []
|
303 |
final_gen_part = final_sequence[prompt_length:]
|
|
|
|
|
|
|
304 |
for i in range(gen_length):
|
305 |
-
|
306 |
-
if token_id == EOS_TOKEN_ID or token_id == PAD_TOKEN_ID:
|
307 |
-
final_state_vis.append(("", None))
|
308 |
-
continue
|
309 |
-
|
310 |
-
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
|
311 |
-
display_token = token_str if token_str else MASK_TOKEN if token_id == MASK_ID else "?"
|
312 |
-
label = None
|
313 |
is_constrained = i in processed_constraints
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
visualization_states.append(final_state_vis)
|
320 |
|
321 |
|
@@ -324,160 +260,8 @@ def dream_generate_response_with_visualization(
|
|
324 |
import traceback
|
325 |
traceback.print_exc()
|
326 |
error_msg = f"Error during generation: {str(e)}"
|
327 |
-
|
328 |
-
visualization_states.append([("Error", "Error")])
|
329 |
final_text = f"Generation failed: {e}"
|
330 |
|
331 |
print("--- DREAM Generation Finished ---")
|
332 |
-
return visualization_states, final_text
|
333 |
-
|
334 |
-
|
335 |
-
# --- Gradio UI Setup ---
|
336 |
-
|
337 |
-
css = '''
|
338 |
-
.category-legend{display:none}
|
339 |
-
/* button{height: 60px} */
|
340 |
-
.small_btn {max-width: 100px; height: 40px; flex-grow: 0; margin-left: 5px;}
|
341 |
-
.chat-input-row {display: flex; align-items: center;}
|
342 |
-
.chat-input-row > * {margin-right: 5px;}
|
343 |
-
.chat-input-row > *:last-child {margin-right: 0;}
|
344 |
-
'''
|
345 |
-
def create_chatbot_demo():
|
346 |
-
with gr.Blocks(css=css) as demo:
|
347 |
-
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
348 |
-
gr.Markdown("Watch the text generate step-by-step. Special tokens (EOS, PAD) are hidden.")
|
349 |
-
gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)")
|
350 |
-
|
351 |
-
# STATE MANAGEMENT
|
352 |
-
chat_history = gr.State([])
|
353 |
-
|
354 |
-
# UI COMPONENTS
|
355 |
-
with gr.Row():
|
356 |
-
with gr.Column(scale=3):
|
357 |
-
chatbot_ui = gr.Chatbot(
|
358 |
-
label="Conversation", height=500, bubble_full_width=False
|
359 |
-
)
|
360 |
-
with gr.Row(elem_classes="chat-input-row"):
|
361 |
-
user_input = gr.Textbox(
|
362 |
-
label="Your Message", placeholder="Type your message...",
|
363 |
-
scale=4, container=False, show_label=False
|
364 |
-
)
|
365 |
-
send_btn = gr.Button("Send", scale=1, elem_classes="small_btn")
|
366 |
-
|
367 |
-
constraints_input = gr.Textbox(
|
368 |
-
label="Word Constraints (Optional)",
|
369 |
-
info="Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon'",
|
370 |
-
placeholder="e.g., 0:Hello, 6:world", value=""
|
371 |
-
)
|
372 |
-
with gr.Column(scale=2):
|
373 |
-
# --- Updated HighlightedText with color_map ---
|
374 |
-
output_vis = gr.HighlightedText(
|
375 |
-
label="Denoising Process Visualization",
|
376 |
-
combine_adjacent=True, # Combine adjacent tokens with same label
|
377 |
-
show_legend=False, # Keep legend off
|
378 |
-
color_map={ # Map labels to colors
|
379 |
-
"Mask": "#A0A0A0", # Lighter Gray for Mask
|
380 |
-
"New": "#66CC66", # Light Green
|
381 |
-
"Old": "#6699CC", # Light Blue
|
382 |
-
"Constraint": "#B266FF", # Lighter Purple/Violet
|
383 |
-
"Error": "#FF6666" # Light Red
|
384 |
-
}
|
385 |
-
)
|
386 |
-
gr.Markdown(
|
387 |
-
# Update legend text to match labels
|
388 |
-
"**Color Legend:** <span style='color:#A0A0A0'>■ Mask</span> | <span style='color:#66CC66'>■ New</span> | <span style='color:#6699CC'>■ Old</span> | <span style='color:#B266FF'>■ Constraint</span>"
|
389 |
-
)
|
390 |
-
|
391 |
-
|
392 |
-
# Advanced generation settings (Keep as before)
|
393 |
-
with gr.Accordion("Generation Settings", open=False):
|
394 |
-
with gr.Row():
|
395 |
-
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
|
396 |
-
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
|
397 |
-
with gr.Row():
|
398 |
-
temperature = gr.Slider(minimum=0.0, maximum=1.5, value=0.6, step=0.05, label="Temperature")
|
399 |
-
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (Nucleus Sampling)")
|
400 |
-
with gr.Row():
|
401 |
-
remasking_strategy = gr.Radio(
|
402 |
-
choices=[("Random", "origin"), ("Entropy", "entropy"), ("MaskGit+", "maskgit_plus"), ("TopK Margin", "topk_margin")],
|
403 |
-
value="entropy", label="Generation Order Strategy (alg)"
|
404 |
-
)
|
405 |
-
alg_temp = gr.Slider(
|
406 |
-
minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Order Randomness (alg_temp)",
|
407 |
-
info="Adds randomness to non-Random strategies. Ignored for Random."
|
408 |
-
)
|
409 |
-
with gr.Row():
|
410 |
-
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.05, step=0.01, label="Visualization Delay (seconds)")
|
411 |
-
|
412 |
-
clear_btn = gr.Button("Clear Conversation")
|
413 |
-
|
414 |
-
# --- Event Handlers (Keep as before) ---
|
415 |
-
def add_message_to_history(history, message, response):
|
416 |
-
history = history.copy(); history.append([message, response]); return history
|
417 |
-
|
418 |
-
def user_message_submitted(message, history):
|
419 |
-
print(f"User submitted: '{message}'")
|
420 |
-
if not message or not message.strip():
|
421 |
-
print("Empty message submitted, doing nothing."); return history, history, "", []
|
422 |
-
history = add_message_to_history(history, message, None)
|
423 |
-
history_for_display = history.copy()
|
424 |
-
message_out = ""; vis_clear = []
|
425 |
-
return history, history_for_display, message_out, vis_clear
|
426 |
-
|
427 |
-
def bot_response_generator(
|
428 |
-
history, gen_length, steps, constraints_text, delay,
|
429 |
-
temperature, top_p, alg, alg_temp
|
430 |
-
):
|
431 |
-
print("--- Generating Bot Response ---")
|
432 |
-
if not history or history[-1][1] is not None:
|
433 |
-
print("History empty or last message already has response. Skipping generation.")
|
434 |
-
yield history, [], "No response generated." # Yield current state if called unnecessarily
|
435 |
-
return
|
436 |
-
|
437 |
-
messages = format_chat_history(history)
|
438 |
-
parsed_constraints = parse_constraints(constraints_text)
|
439 |
-
|
440 |
-
try:
|
441 |
-
vis_states, response_text = dream_generate_response_with_visualization(
|
442 |
-
messages, gen_length=gen_length, steps=steps, constraints=parsed_constraints,
|
443 |
-
temperature=temperature, top_p=top_p, alg=alg, alg_temp=alg_temp
|
444 |
-
)
|
445 |
-
history[-1][1] = response_text.strip() # Update history state
|
446 |
-
|
447 |
-
if vis_states:
|
448 |
-
# Yield initial state first
|
449 |
-
yield history, vis_states[0] # Update chatbot, update visualization
|
450 |
-
# Animate remaining states
|
451 |
-
for state in vis_states[1:]:
|
452 |
-
time.sleep(delay)
|
453 |
-
yield history, state # Update chatbot (implicitly), update visualization
|
454 |
-
else:
|
455 |
-
yield history, [("Generation failed.", "Error")] # Use label
|
456 |
-
|
457 |
-
except Exception as e:
|
458 |
-
print(f"Error in bot_response_generator: {e}")
|
459 |
-
import traceback; traceback.print_exc()
|
460 |
-
error_msg = f"Error: {str(e)}"
|
461 |
-
error_vis = [(error_msg, "Error")] # Use label
|
462 |
-
yield history, error_vis
|
463 |
-
|
464 |
-
def clear_conversation():
|
465 |
-
print("Clearing conversation."); return [], [], "", []
|
466 |
-
|
467 |
-
# --- Wire UI elements (Keep as before) ---
|
468 |
-
user_input.submit(fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)\
|
469 |
-
.then(fn=bot_response_generator, inputs=[history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp], outputs=[chatbot_ui, output_vis])
|
470 |
-
|
471 |
-
send_btn.click(fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)\
|
472 |
-
.then(fn=bot_response_generator, inputs=[history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp], outputs=[chatbot_ui, output_vis])
|
473 |
-
|
474 |
-
clear_btn.click(fn=clear_conversation, inputs=[], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)
|
475 |
-
|
476 |
-
return demo
|
477 |
-
|
478 |
-
# --- Launch the Gradio App ---
|
479 |
-
if __name__ == "__main__":
|
480 |
-
print("Creating Gradio demo...")
|
481 |
-
demo = create_chatbot_demo()
|
482 |
-
print("Launching Gradio demo...")
|
483 |
-
demo.queue().launch(share=True, debug=True)
|
|
|
1 |
+
# Replace the existing dream_generate_response_with_visualization function
|
2 |
+
# in the previous code block with this updated version.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
@gpu_check
|
5 |
def dream_generate_response_with_visualization(
|
|
|
13 |
alg_temp=0.0,
|
14 |
):
|
15 |
"""
|
16 |
+
Generate text with DREAM model with visualization using the generation hook,
|
17 |
+
including special token handling (show once, then hide).
|
18 |
+
|
19 |
+
Args:
|
20 |
+
messages: List of message dictionaries with 'role' and 'content'
|
21 |
+
gen_length: Length of text to generate (max_new_tokens)
|
22 |
+
steps: Number of diffusion steps
|
23 |
+
constraints: Dictionary mapping positions (relative to response start) to words
|
24 |
+
temperature: Sampling temperature
|
25 |
+
top_p: Nucleus sampling p
|
26 |
+
alg: Remasking algorithm ('origin', 'maskgit_plus', 'topk_margin', 'entropy')
|
27 |
+
alg_temp: Temperature for confidence-based algorithms
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
Tuple: (List of visualization states, final generated text string)
|
31 |
"""
|
32 |
print("--- Starting DREAM Generation ---")
|
33 |
print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}")
|
34 |
print(f"Constraints: {constraints}")
|
35 |
|
36 |
# --- Input Preparation ---
|
37 |
+
if constraints is None:
|
38 |
+
constraints = {}
|
39 |
|
40 |
processed_constraints = {}
|
41 |
print("Processing constraints:")
|
|
|
53 |
|
54 |
try:
|
55 |
inputs = tokenizer.apply_chat_template(
|
56 |
+
messages,
|
57 |
+
return_tensors="pt",
|
58 |
+
return_dict=True,
|
59 |
+
add_generation_prompt=True
|
60 |
)
|
61 |
input_ids = inputs.input_ids.to(device=device)
|
62 |
attention_mask = inputs.attention_mask.to(device=device)
|
63 |
prompt_length = input_ids.shape[1]
|
64 |
print(f"Input prompt length: {prompt_length}")
|
65 |
+
# print(f"Input IDs: {input_ids}") # Verbose
|
66 |
except Exception as e:
|
67 |
print(f"Error applying chat template: {e}")
|
68 |
+
return [([("Error applying chat template.", "red")],)], f"Error: {e}"
|
69 |
|
|
|
70 |
if prompt_length + gen_length > 2048:
|
71 |
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.")
|
72 |
gen_length = 2048 - prompt_length
|
73 |
if gen_length <= 0:
|
74 |
print("Error: Prompt is already too long.")
|
75 |
+
return [([("Prompt too long.", "red")],)], "Error: Prompt too long."
|
76 |
|
77 |
# --- State for Visualization Hook ---
|
78 |
visualization_states = []
|
79 |
last_x = None
|
80 |
|
81 |
+
# Define special token IDs to hide after first reveal
|
82 |
+
# Using a set for efficient lookup. Add others if needed (e.g., pad_token_id).
|
83 |
+
special_token_ids_to_hide = {
|
84 |
+
tokenizer.eos_token_id,
|
85 |
+
tokenizer.pad_token_id,
|
86 |
+
# tokenizer.bos_token_id # Usually not generated mid-sequence
|
87 |
+
}
|
88 |
+
# Filter out None values if some special tokens aren't defined
|
89 |
+
special_token_ids_to_hide = {tid for tid in special_token_ids_to_hide if tid is not None}
|
90 |
+
print(f"Special token IDs to hide visually after reveal: {special_token_ids_to_hide}")
|
91 |
+
|
92 |
+
|
93 |
initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
94 |
for pos, token_id in processed_constraints.items():
|
95 |
absolute_pos = pos
|
|
|
100 |
for i in range(gen_length):
|
101 |
token_id = initial_x_part[0, i].item()
|
102 |
if token_id == MASK_ID:
|
103 |
+
initial_state_vis.append((MASK_TOKEN, "#444444")) # Mask color
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
else:
|
105 |
+
token_str = tokenizer.decode([token_id], skip_special_tokens=True)
|
106 |
+
initial_state_vis.append((token_str if token_str else "?", "#800080")) # Constraint color (purple)
|
|
|
|
|
107 |
visualization_states.append(initial_state_vis)
|
108 |
|
|
|
109 |
# --- Define the Hook Function ---
|
110 |
def generation_tokens_hook_func(step, x, logits):
|
111 |
+
nonlocal last_x, visualization_states # Allow modification of outer scope variables
|
112 |
+
# print(f"Hook called for step {step}") # Verbose
|
113 |
|
114 |
current_x = x.clone()
|
115 |
constrained_x = current_x.clone()
|
|
|
119 |
return current_x
|
120 |
|
121 |
# 1. Apply Constraints
|
|
|
122 |
for pos, token_id in processed_constraints.items():
|
123 |
absolute_pos = prompt_len + pos
|
124 |
if prompt_len <= absolute_pos < current_x.shape[1]:
|
125 |
if constrained_x[0, absolute_pos] != token_id:
|
126 |
constrained_x[0, absolute_pos] = token_id
|
|
|
127 |
|
128 |
# 2. Generate Visualization State for *this* step
|
129 |
current_state_vis = []
|
|
|
133 |
for i in range(gen_length):
|
134 |
current_token_id = gen_part_current[i].item()
|
135 |
|
136 |
+
# Basic check for safety, though unlikely needed with prompt_len check
|
137 |
+
if current_token_id is None:
|
138 |
+
current_state_vis.append((MASK_TOKEN, "#444444"))
|
139 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
|
|
141 |
is_constrained = i in processed_constraints
|
142 |
+
is_special = current_token_id in special_token_ids_to_hide
|
143 |
+
|
144 |
+
# Decode carefully: don't skip specials initially for display text
|
145 |
+
raw_token_str = tokenizer.decode([current_token_id], skip_special_tokens=False).strip()
|
146 |
+
# Use MASK_TOKEN string for MASK_ID, otherwise use decoded string or '?'
|
147 |
+
display_token = MASK_TOKEN if current_token_id == MASK_ID else (raw_token_str if raw_token_str else "?")
|
148 |
+
|
149 |
+
# Determine the state based on current and previous token
|
150 |
+
previous_token_id = gen_part_last[i].item() if gen_part_last is not None else None
|
151 |
|
152 |
+
# Determine color and potentially modify display_token for hiding
|
153 |
if current_token_id == MASK_ID:
|
154 |
+
color = "#444444" # Dark Gray
|
155 |
+
display_token = MASK_TOKEN
|
156 |
+
elif is_constrained and processed_constraints.get(i) == current_token_id:
|
157 |
+
color = "#800080" # Purple - keep constraint visible
|
158 |
+
# Even if special, show the constraint for clarity
|
159 |
+
elif previous_token_id == MASK_ID or previous_token_id is None:
|
160 |
+
# --- Newly revealed in this step ---
|
161 |
+
if is_special:
|
162 |
+
# Newly revealed special token: Show it this time
|
163 |
+
color = "#FF8C00" # Dark Orange (distinct color for first reveal)
|
164 |
+
# display_token is already the raw special token string
|
165 |
+
else:
|
166 |
+
# Newly revealed regular token
|
167 |
+
color = "#66CC66" # Light Green
|
168 |
+
# display_token is already the regular token string
|
169 |
+
elif is_special:
|
170 |
+
# --- Was revealed previously AND is special: Hide it now ---
|
171 |
+
color = "#FFFFFF" # White background / Transparent conceptually
|
172 |
+
display_token = "" # Make it disappear visually
|
173 |
+
# Alternative: Subtle placeholder
|
174 |
+
# display_token = "."
|
175 |
+
# color = "#EEEEEE"
|
176 |
else:
|
177 |
+
# --- Previously revealed regular token ---
|
178 |
+
color = "#6699CC" # Light Blue
|
179 |
+
# display_token is already the regular token string
|
180 |
|
181 |
+
current_state_vis.append((display_token, color))
|
182 |
|
183 |
visualization_states.append(current_state_vis)
|
184 |
|
|
|
188 |
# 4. Return the sequence with constraints applied
|
189 |
return constrained_x
|
190 |
|
191 |
+
|
192 |
# --- Run DREAM Generation ---
|
193 |
try:
|
194 |
print("Calling model.diffusion_generate...")
|
195 |
initial_full_x = torch.cat([input_ids, initial_x_part], dim=1)
|
196 |
+
last_x = initial_full_x.clone() # Initialize last_x for the first hook call
|
197 |
|
198 |
output = model.diffusion_generate(
|
199 |
input_ids,
|
|
|
213 |
final_sequence = output.sequences[0]
|
214 |
response_token_ids = final_sequence[prompt_length:]
|
215 |
|
216 |
+
# Decode final text *skipping* special tokens for the chatbot display
|
217 |
final_text = tokenizer.decode(
|
218 |
response_token_ids,
|
219 |
skip_special_tokens=True,
|
220 |
clean_up_tokenization_spaces=True
|
221 |
).strip()
|
222 |
+
print(f"Final generated text (cleaned): {final_text}")
|
223 |
|
224 |
+
# Add the very final state to visualization if needed (safeguard)
|
225 |
+
# This uses the same logic as the hook for consistency
|
226 |
if len(visualization_states) <= steps:
|
227 |
+
print("Adding final visualization state manually (safeguard).")
|
228 |
final_state_vis = []
|
229 |
final_gen_part = final_sequence[prompt_length:]
|
230 |
+
# Need the state *before* this final one to know what was 'new'
|
231 |
+
gen_part_last_final = last_x[0, prompt_len:] if last_x is not None else None
|
232 |
+
|
233 |
for i in range(gen_length):
|
234 |
+
current_token_id = final_gen_part[i].item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
is_constrained = i in processed_constraints
|
236 |
+
is_special = current_token_id in special_token_ids_to_hide
|
237 |
+
raw_token_str = tokenizer.decode([current_token_id], skip_special_tokens=False).strip()
|
238 |
+
display_token = MASK_TOKEN if current_token_id == MASK_ID else (raw_token_str if raw_token_str else "?")
|
239 |
+
previous_token_id = gen_part_last_final[i].item() if gen_part_last_final is not None else None
|
240 |
+
|
241 |
+
if current_token_id == MASK_ID:
|
242 |
+
color = "#444444"
|
243 |
+
display_token = MASK_TOKEN
|
244 |
+
elif is_constrained and processed_constraints.get(i) == current_token_id:
|
245 |
+
color = "#800080"
|
246 |
+
elif previous_token_id == MASK_ID or previous_token_id is None: # Newly revealed
|
247 |
+
color = "#FF8C00" if is_special else "#66CC66"
|
248 |
+
elif is_special: # Previously revealed special
|
249 |
+
color = "#FFFFFF"
|
250 |
+
display_token = ""
|
251 |
+
else: # Previously revealed regular
|
252 |
+
color = "#6699CC"
|
253 |
+
|
254 |
+
final_state_vis.append((display_token, color))
|
255 |
visualization_states.append(final_state_vis)
|
256 |
|
257 |
|
|
|
260 |
import traceback
|
261 |
traceback.print_exc()
|
262 |
error_msg = f"Error during generation: {str(e)}"
|
263 |
+
visualization_states.append([("Error", "red")])
|
|
|
264 |
final_text = f"Generation failed: {e}"
|
265 |
|
266 |
print("--- DREAM Generation Finished ---")
|
267 |
+
return visualization_states, final_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|