Spaces:
Running
Running
WIP
Browse files- app.py +138 -2
- requirements.txt +2 -1
app.py
CHANGED
@@ -3,9 +3,15 @@ import subprocess
|
|
3 |
import datetime
|
4 |
import tempfile
|
5 |
import requests
|
|
|
|
|
6 |
from loguru import logger
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
headers = {
|
10 |
"Accept": "application/json",
|
11 |
"Content-Type": "audio/flac"
|
@@ -109,6 +115,114 @@ def check_ffmpeg():
|
|
109 |
# Initialize ffmpeg check
|
110 |
check_ffmpeg()
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def transcribe(inputs, return_timestamps, generate_subs):
|
113 |
"""Transcribe audio input using Whisper model via Hugging Face Inference API.
|
114 |
|
@@ -194,6 +308,25 @@ def transcribe(inputs, return_timestamps, generate_subs):
|
|
194 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
195 |
|
196 |
# Define interfaces first
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
mf_transcribe = gr.Interface(
|
198 |
fn=transcribe,
|
199 |
inputs=[
|
@@ -234,7 +367,10 @@ file_transcribe = gr.Interface(
|
|
234 |
|
235 |
# Then set up the demo with the interfaces
|
236 |
with demo:
|
237 |
-
gr.TabbedInterface(
|
|
|
|
|
|
|
238 |
|
239 |
logger.info("Starting Gradio interface")
|
240 |
demo.queue().launch(ssr_mode=False)
|
|
|
3 |
import datetime
|
4 |
import tempfile
|
5 |
import requests
|
6 |
+
import os
|
7 |
+
import time
|
8 |
from loguru import logger
|
9 |
|
10 |
+
# Load API keys from environment variables
|
11 |
+
API_URL = os.getenv("API_URL")
|
12 |
+
SIEVE_API_KEY = os.getenv("SIEVE_API_KEY")
|
13 |
+
SIEVE_API_URL = "https://mango.sievedata.com/v2"
|
14 |
+
|
15 |
headers = {
|
16 |
"Accept": "application/json",
|
17 |
"Content-Type": "audio/flac"
|
|
|
115 |
# Initialize ffmpeg check
|
116 |
check_ffmpeg()
|
117 |
|
118 |
+
def download_youtube_audio(url):
|
119 |
+
"""Download audio from YouTube using Sieve API.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
url (str): YouTube video URL
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
str: Path to downloaded audio file
|
126 |
+
|
127 |
+
Raises:
|
128 |
+
gr.Error: If download fails or API key is not set
|
129 |
+
"""
|
130 |
+
if not SIEVE_API_KEY:
|
131 |
+
raise gr.Error("SIEVE_API_KEY environment variable is not set")
|
132 |
+
|
133 |
+
try:
|
134 |
+
# Create a temporary file for the audio
|
135 |
+
temp_file = tempfile.NamedTemporaryFile(suffix='.mp3', delete=False)
|
136 |
+
temp_file.close()
|
137 |
+
output_path = temp_file.name
|
138 |
+
|
139 |
+
# Prepare the request to Sieve API
|
140 |
+
payload = {
|
141 |
+
"function": "sieve/youtube-downloader",
|
142 |
+
"inputs": {
|
143 |
+
"url": url,
|
144 |
+
"download_type": "audio",
|
145 |
+
"audio_format": "mp3",
|
146 |
+
"include_metadata": False,
|
147 |
+
"include_subtitles": False
|
148 |
+
}
|
149 |
+
}
|
150 |
+
|
151 |
+
# Send request to Sieve API
|
152 |
+
response = requests.post(
|
153 |
+
f"{SIEVE_API_URL}/push",
|
154 |
+
headers={"X-API-Key": SIEVE_API_KEY, "Content-Type": "application/json"},
|
155 |
+
json=payload
|
156 |
+
)
|
157 |
+
response.raise_for_status()
|
158 |
+
job_id = response.json().get("id")
|
159 |
+
|
160 |
+
if not job_id:
|
161 |
+
raise gr.Error("Failed to get job ID from Sieve API")
|
162 |
+
|
163 |
+
# Poll for job completion
|
164 |
+
while True:
|
165 |
+
job_response = requests.get(
|
166 |
+
f"{SIEVE_API_URL}/jobs/{job_id}",
|
167 |
+
headers={"X-API-Key": SIEVE_API_KEY}
|
168 |
+
)
|
169 |
+
job_response.raise_for_status()
|
170 |
+
job_data = job_response.json()
|
171 |
+
|
172 |
+
if job_data.get("status") == "completed":
|
173 |
+
# Download the audio file
|
174 |
+
audio_url = job_data.get("output_0", {}).get("url")
|
175 |
+
if not audio_url:
|
176 |
+
raise gr.Error("No audio URL in job response")
|
177 |
+
|
178 |
+
audio_response = requests.get(audio_url)
|
179 |
+
audio_response.raise_for_status()
|
180 |
+
|
181 |
+
with open(output_path, "wb") as f:
|
182 |
+
f.write(audio_response.content)
|
183 |
+
|
184 |
+
return output_path
|
185 |
+
|
186 |
+
elif job_data.get("status") == "failed":
|
187 |
+
raise gr.Error(f"Job failed: {job_data.get('error', 'Unknown error')}")
|
188 |
+
|
189 |
+
# Wait before polling again
|
190 |
+
time.sleep(2)
|
191 |
+
|
192 |
+
except Exception as e:
|
193 |
+
logger.exception(f"Error downloading YouTube audio: {str(e)}")
|
194 |
+
raise gr.Error(f"Failed to download YouTube audio: {str(e)}")
|
195 |
+
|
196 |
+
def transcribe_youtube(url, return_timestamps, generate_subs):
|
197 |
+
"""Transcribe audio from YouTube video.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
url (str): YouTube video URL
|
201 |
+
return_timestamps (bool): Whether to include timestamps in output
|
202 |
+
generate_subs (bool): Whether to generate SRT subtitles
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
tuple: (formatted_result, srt_file, correction_text)
|
206 |
+
"""
|
207 |
+
try:
|
208 |
+
# Download audio from YouTube
|
209 |
+
audio_path = download_youtube_audio(url)
|
210 |
+
|
211 |
+
# Transcribe the downloaded audio
|
212 |
+
result = transcribe(audio_path, return_timestamps, generate_subs)
|
213 |
+
|
214 |
+
# Clean up the temporary file
|
215 |
+
try:
|
216 |
+
os.unlink(audio_path)
|
217 |
+
except Exception as e:
|
218 |
+
logger.warning(f"Failed to delete temporary file: {str(e)}")
|
219 |
+
|
220 |
+
return result
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
logger.exception(f"Error in YouTube transcription: {str(e)}")
|
224 |
+
raise gr.Error(f"Failed to transcribe YouTube video: {str(e)}")
|
225 |
+
|
226 |
def transcribe(inputs, return_timestamps, generate_subs):
|
227 |
"""Transcribe audio input using Whisper model via Hugging Face Inference API.
|
228 |
|
|
|
308 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
309 |
|
310 |
# Define interfaces first
|
311 |
+
youtube_transcribe = gr.Interface(
|
312 |
+
fn=transcribe_youtube,
|
313 |
+
inputs=[
|
314 |
+
gr.Textbox(label="YouTube URL", placeholder="https://www.youtube.com/watch?v=..."),
|
315 |
+
gr.Checkbox(label="Include timestamps", value=True),
|
316 |
+
gr.Checkbox(label="Generate subtitles", value=True),
|
317 |
+
],
|
318 |
+
outputs=[
|
319 |
+
gr.JSON(label="Transcription", open=True),
|
320 |
+
gr.File(label="Subtitles (SRT)", visible=True),
|
321 |
+
],
|
322 |
+
title="Tajik Speech Transcription",
|
323 |
+
description=(
|
324 |
+
"Transcribe Tajik language audio from YouTube videos. "
|
325 |
+
"Paste a YouTube URL and get accurate transcription with optional timestamps "
|
326 |
+
"and subtitles."
|
327 |
+
)
|
328 |
+
)
|
329 |
+
|
330 |
mf_transcribe = gr.Interface(
|
331 |
fn=transcribe,
|
332 |
inputs=[
|
|
|
367 |
|
368 |
# Then set up the demo with the interfaces
|
369 |
with demo:
|
370 |
+
gr.TabbedInterface(
|
371 |
+
[youtube_transcribe, file_transcribe, mf_transcribe],
|
372 |
+
["YouTube", "Audio file", "Microphone"]
|
373 |
+
)
|
374 |
|
375 |
logger.info("Starting Gradio interface")
|
376 |
demo.queue().launch(ssr_mode=False)
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
loguru
|
2 |
-
gradio
|
|
|
|
1 |
loguru
|
2 |
+
gradio
|
3 |
+
requests
|