from smolagents import load_tool, Tool, tool, ToolCallingAgent, CodeAgent, GoogleSearchTool,FinalAnswerTool,PythonInterpreterTool , LiteLLMModel, VisitWebpageTool, DuckDuckGoSearchTool from litellm import completion from langchain.agents import load_tools from langchain_community.tools.tavily_search import TavilySearchResults import os from src.final_assignment_template.models import openrouter_qwenCoder_model, modelLiteLLm from src.final_assignment_template.tools import travily_tool, Video_understanding_tool, image_understanding_tool, get_task_file # (Keep Constants as is) # --- Constants --- web_agent = CodeAgent( model=openrouter_qwenCoder_model, tools=[ # GoogleSearchTool(provider="serper"), # DuckDuckGoSearchTool(max_results=10), travily_tool, VisitWebpageTool(), ], name="web_agent", description="""Browses the web to find information""", verbosity_level=1, max_steps=5, ) manager_agent = CodeAgent( name="Task_Agent", description="""You will be provided a task and you need to verify before giving final answer You can perform tasks which are text and image based, skip all other """, model=modelLiteLLm, tools=[PythonInterpreterTool(),Video_understanding_tool,image_understanding_tool,get_task_file], managed_agents=[web_agent], additional_authorized_imports=[ "json", "pandas", "numpy", "markdown" 'math', 'statistics', 're', 'unicodedata', 'random', 'datetime', 'queue', 'time', 'collections', 'stat', 'itertools', 'PIL','requests' ], planning_interval=3, verbosity_level=1, # final_answer_checks=[check_reasoning_and_plot], max_steps=5, )