Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import inspect # To get source code for __repr__ | |
import pandas as pd # For displaying results in a table | |
# --- Constants --- | |
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/" # Default URL for your FastAPI app | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
""" | |
A very simple agent placeholder. | |
It just returns a fixed string for any question. | |
""" | |
def __init__(self): | |
print("BasicAgent initialized.") | |
# Add any setup if needed | |
def __call__(self, question: str) -> str: | |
""" | |
The agent's logic to answer a question. | |
This basic version ignores the question content. | |
""" | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# Replace this with actual logic if you were building a real agent | |
fixed_answer = "This is a default answer." | |
print(f"Agent returning fixed answer: {fixed_answer}") | |
return fixed_answer | |
def __repr__(self) -> str: | |
""" | |
Return the source code required to reconstruct this agent. | |
""" | |
imports = [ | |
"import inspect\n" # May not be strictly needed by the agent logic itself | |
] | |
class_source = inspect.getsource(BasicAgent) | |
full_source = "\n".join(imports) + "\n" + class_source | |
return full_source | |
# --- Gradio UI and Logic --- | |
def get_current_script_content() -> str: | |
"""Attempts to read and return the content of the currently running script.""" | |
try: | |
# __file__ holds the path to the current script | |
script_path = os.path.abspath(__file__) | |
print(f"Reading script content from: {script_path}") | |
with open(script_path, 'r', encoding='utf-8') as f: | |
return f.read() | |
except NameError: | |
# __file__ is not defined (e.g., running in an interactive interpreter) | |
print("Warning: __file__ is not defined. Cannot read script content.") | |
return "# Agent code unavailable: __file__ not defined" | |
except FileNotFoundError: | |
print(f"Warning: Script file '{script_path}' not found.") | |
return f"# Agent code unavailable: Script file not found at {script_path}" | |
except Exception as e: | |
print(f"Error reading script file '{script_path}': {e}") | |
return f"# Agent code unavailable: Error reading script file: {e}" | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
if profile: | |
print(profile) | |
username= f"{profile.name}" | |
else: | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate the Agent | |
try: | |
agent = BasicAgent() | |
agent_code = agent.__repr__() | |
# print(f"Agent Code (first 200): {agent_code[:200]}...") # Debug | |
except Exception as e: | |
print(f"Error instantiating agent or getting repr: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code=get_current_script_content() | |
# 2. Fetch All Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
status_update = f"Fetched {len(questions_data)} questions. Running agent..." | |
# Yield intermediate status if using gr.update | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run Agent on Each Question | |
results_log = [] # To store data for the results table | |
answers_payload = [] # To store data for the submission API | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) # Call the agent's logic | |
answers_payload.append({ | |
"task_id": task_id, | |
"submitted_answer": submitted_answer | |
}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": submitted_answer | |
}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
# Decide how to handle agent errors - skip? submit default? | |
# Here, we'll just log and potentially skip submission for this task if needed | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}" | |
}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers..." | |
print(status_update) | |
# 5. Submit to Leaderboard | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=45) # Increased timeout | |
response.raise_for_status() | |
result_data = response.json() | |
# Prepare final status message and results table | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score')}% " | |
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')} correct)\n" | |
f"Message: {result_data.get('message')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = e.response.text | |
try: | |
error_json = e.response.json() | |
error_detail = error_json.get('detail', error_detail) | |
except requests.exceptions.JSONDecodeError: | |
pass | |
status_message = f"Submission Failed (HTTP {e.response.status_code}): {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) # Show attempts even if submission failed | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
"Enter the API URL and your username, then click Run. " | |
"This will fetch all questions, run the *very basic* agent on them, " | |
"submit all answers at once, and display the results." | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
# --- Component Interaction --- | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True) |