File size: 7,688 Bytes
ac0f9ba
 
 
 
 
 
 
 
 
 
 
 
2b557d7
 
 
ac0f9ba
 
 
2b557d7
ac0f9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b557d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0f9ba
2b557d7
 
 
 
 
 
ac0f9ba
 
2b557d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0f9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b557d7
 
 
 
 
 
ac0f9ba
 
2b557d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0f9ba
 
 
 
 
 
 
2b557d7
ac0f9ba
 
 
2b557d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0f9ba
 
2b557d7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from smolagents import  Tool, tool

from langchain_community.tools.tavily_search import TavilySearchResults

import requests
import inspect
import pandas as pd
from PIL import Image
from io import BytesIO
import base64


from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
from src.final_assignment_template.models import videoLiteLLm,modelLiteLLm, summarizeModle, imageLiteLLm

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

travily_tool = Tool.from_langchain(TavilySearchResults(max_results=20))

from smolagents import Tool

# class SearchTool(Tool):
#     name = "SearchTool"
#     description = """
#     This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
#     It returns the name of the checkpoint."""
#     inputs = {
#         "task": {
#             "type": "string",
#             "description": "the task category (such as text-classification, depth-estimation, etc)",
#         }
#     }
#     output_type = "string"

#     def forward(self, task: str):
#         from huggingface_hub import list_models

#         model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
#         return model.id

# model_downloads_tool = HFModelDownloadsTool()


from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever

@tool
def bm25_query(texts: list[str], query: str, top_k: int = 3) -> list[str]:
    """
    Creates a BM25 retriever from a list of texts (e.g., web pages, articles),
    queries it, and returns the top relevant results.

    Args:
        texts (list[str]): List of text contents (e.g., web page texts, articles, notes).
        query (str): The search query string.
        top_k (int): Number of top results to return (default is 3).
    
    Returns:
        list[str]: List of top-k relevant page contents.
    """
    documents = [Document(page_content=text) for text in texts]
    retriever = BM25Retriever.from_documents(documents)
    results = retriever.get_relevant_documents(query)
    print(results)
    return [doc.page_content for doc in results[:top_k]]



class BM25Tool(Tool):
    name = "bm25"
    description = (
        "Retrieves relevant information from a provided list of text strings "
        "based on a query using BM25."
    )
    inputs = {
        "query": {
            "type": "string",
            "description": "The text query to search for relevant strings."
        }
    }
    output_type = "string"

    def __init__(self, texts: list[str]):
        """
        Args:
            texts (list[str]): A list of text strings to index (e.g., guest bios, docs, notes).
        """
        documents = [Document(page_content=text) for text in texts]
        self.retriever = BM25Retriever.from_documents(documents)

    def forward(self, query: str) -> str:
        """
        Retrieves the top-3 most relevant strings matching the query.

        Args:
            query (str): Text query.

        Returns:
            str: Concatenated top-3 matching strings or a not-found message.
        """
        results = self.retriever.get_relevant_documents(query)
        if not results:
            return "No relevant information found."
        top_texts = [doc.page_content for doc in results[:3]]
        return "\n\n".join(top_texts)



@tool
def summarize_before_final_answer(
    context: str,
    question: str,
) -> str:
    """
    Given a whole context(all logs) and question sends it to the LLM, and returns the paragraph overview for the answer.

    Args:
        context (str): The full context or background information.
        question (str): The user's specific question about that context.

    Returns:
        str: Summarization of whole process for generating final answer.
    """
    # build a single user prompt
    prompt = (
        context.strip()
        + "\n\n"
        + "Question: "
        + question.strip()
        + "\n\n"
        + "Give the summarize of all steps for generating final answer in next step:"
    )


    # call the model
    response = summarizeModle(
        messages=[{"role": "user", "content": prompt}],
    )

    # the .content attribute holds the generated text
    return response.content.strip()



@tool
def Video_link_understanding_tool(query: str) -> str:
    """
    A tool that processes a video link (e.g., YouTube) and returns a textual understanding of its content using an LLM.

    Args:
        query: A video URL along with an optional query for context or specific focus.

    Returns:
        A text-based summary or understanding of the video content.
    """
    print("Processing video:", query)
    messages = [{"role": "user", "content": [{"type": "text", "text": query}]}]
    resp = videoLiteLLm(messages)
    return resp.content or 'No data'




@tool
def get_task_file(task_id:str)->requests.models.Response:
    """
    This tool is for get the task file using task_id.
    it will return the request response and then this response will be used for other tools.
    
    Args:
        task_id: Task ID
    """

    url = f"{DEFAULT_API_URL}/files/{task_id}"
    print(url)
    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" 
    }
    response = requests.get(url,headers=headers)
    return response

@tool
def image_understanding_tool(query: str, response: requests.models.Response) -> str:
    """
    A tool for analyzing and understanding the content of an image based on a given query.

    This tool processes the image provided in the response (from get_task_file), encodes it into base64,
    and queries a lightweight image LLM to generate insights or answers about the image.

    Args:
        query: The query or instruction related to the image content.
        response: The HTTP response object containing the image data.

    Returns:
        A text-based understanding or interpretation of the image.
    """
    print("Processing image...")

    image = Image.open(BytesIO(response.content)).convert("RGB")

    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_bytes = buffered.getvalue()
    img_b64 = base64.b64encode(img_bytes).decode('utf-8')

    # print(img_b64)
    messages = [{
        "role": "user",
        "content": [
            {"type": "text", "text": query},
            {
                "type": "image_url",
                "image_url": {
                    "url": img_b64,
                    "format": "image/png"
                }
            }
        ]
    }]
    
    resp = imageLiteLLm(messages)
    print(resp.content)
    return resp.content or 'No data'





@tool
def extract_filter_textual_info_from_textual_context(
    context: str,
    question: str,
) -> str:
    """
    Tool to pull out targeted details from a large body of text.

    Combines the context and an questoin into a single prompt,
    queries the llm, and returns the resulting extract.

    Args:
        context (str): The full background text (e.g., long document, webpage, notes).
        question (str): What you want to extract (e.g., “list all dates mentioned”).

    Returns:
        str: The extracted information, trimmed of whitespace.
    """
    # Build the extraction prompt
    prompt = (
        "Context:\n" + context.strip() +
        "\n\nQuestion: " + question.strip() +
        "\n\nExtracted Information:"
    )


    # Call the model to perform extraction
    response = modelLiteLLm(
        messages=[{"role": "user", "content": prompt}],
    )
    print(response)
    return response.content