|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, List, Optional |
|
|
|
from ...data import get_dataset, split_dataset, DataCollatorForSeqGraph |
|
from ...extras.constants import IGNORE_INDEX |
|
from ...extras.misc import get_logits_processor |
|
from ...extras.ploting import plot_loss |
|
from ...model import load_language_model, load_tokenizer |
|
|
|
from ...model import GraphLLMForCausalMLM |
|
|
|
from .metric import ComputeMetrics, compute_accuracy, eval_logit_processor |
|
from .trainer import CustomSeq2SeqTrainer |
|
|
|
from torch.utils.data import DataLoader |
|
|
|
if TYPE_CHECKING: |
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback |
|
|
|
from ...hparams import ( |
|
DataArguments, |
|
FinetuningArguments, |
|
GeneratingArguments, |
|
ModelArguments, |
|
) |
|
|
|
|
|
def run_mmsft( |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
generating_args: "GeneratingArguments", |
|
callbacks: Optional[List["TrainerCallback"]] = None, |
|
): |
|
tokenizer_module = load_tokenizer(model_args) |
|
tokenizer = tokenizer_module["tokenizer"] |
|
mol_id_to_pyg, dataset = get_dataset( |
|
model_args, data_args, training_args, tokenizer=tokenizer |
|
) |
|
|
|
data_collator = DataCollatorForSeqGraph( |
|
tokenizer=tokenizer, |
|
mol_id_to_pyg=mol_id_to_pyg, |
|
pad_to_multiple_of=( |
|
8 if tokenizer.padding_side == "right" else None |
|
), |
|
label_pad_token_id=( |
|
IGNORE_INDEX |
|
if data_args.ignore_pad_token_for_loss |
|
else tokenizer.pad_token_id |
|
), |
|
) |
|
|
|
model = GraphLLMForCausalMLM.from_pretrained( |
|
tokenizer, model_args, data_args, training_args, finetuning_args |
|
) |
|
|
|
|
|
training_args.generation_max_length = ( |
|
training_args.generation_max_length or data_args.cutoff_len |
|
) |
|
training_args.generation_num_beams = ( |
|
data_args.eval_num_beams or training_args.generation_num_beams |
|
) |
|
training_args.remove_unused_columns = False |
|
|
|
trainer = CustomSeq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
finetuning_args=finetuning_args, |
|
data_collator=data_collator, |
|
callbacks=callbacks, |
|
compute_metrics=( |
|
ComputeMetrics(tokenizer) |
|
if training_args.predict_with_generate |
|
else compute_accuracy |
|
), |
|
preprocess_logits_for_metrics=( |
|
None if training_args.predict_with_generate else eval_logit_processor |
|
), |
|
**tokenizer_module, |
|
**split_dataset(dataset, data_args, training_args), |
|
) |
|
|
|
|
|
gen_kwargs = generating_args.to_dict() |
|
gen_kwargs["eos_token_id"] = [ |
|
tokenizer.eos_token_id |
|
] + tokenizer.additional_special_tokens_ids |
|
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id |
|
gen_kwargs["logits_processor"] = get_logits_processor() |
|
|
|
|
|
if training_args.do_train: |
|
train_result = trainer.train( |
|
resume_from_checkpoint=training_args.resume_from_checkpoint |
|
) |
|
trainer.save_model() |
|
trainer.log_metrics("train", train_result.metrics) |
|
trainer.save_metrics("train", train_result.metrics) |
|
trainer.save_state() |
|
if trainer.is_world_process_zero() and finetuning_args.plot_loss: |
|
plot_loss( |
|
training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"] |
|
) |